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Although we think of topological and symmetry broken order as two distinct kinds of order,
this paper describes a situation in which this distinction blurs. We describe a configuration in
which we gap the edge of a topological insulator with a nonlocal order parameter that breaks time
reversal symmetry. Rather than having twofold symmetry broken degeneracy, the ground state has
topologically protected fourfold degeneracy. We show that in the limit of a thin strip, the nonlocal
order parameter becomes local, ground state becomes twofold degenerate symmetry broken state.

INTRODUCTION

Topological insulators have gapless edge modes pro-
tected by charge conservation and time reversal symme-
try. The edge of a topological insulator can be gapped
only if either of these symmetries are broken, explicitly
or spontaneously. However, Wang and Levin [4] consider
an apparently paradoxical situation where it seems that
we can gap the edge of a topological insulator without
breaking any symmetries. This system, shown in Figure
1c, consists of a topological insulator surrounded by a
fractional insulator annulus, which is in turn surrounded
by vacuum. The resolution of this paradox introduces a
‘weak’ kind of symmetry breaking with a nonlocal order
parameter. When the width of the fractional insulator
becomes small, the order parameter becomes local, and
we recover the usual notion of symmetry breaking.

First, we do a lightning fast review of Chern-Simons
theory and the K-matrix formalism, which may be
skipped [7]. We then examine the two interfaces and
see how they can be gapped without breaking any sym-
metries, leading to an apparent paradox: a topological
insulator with a gapped edge with unbroken symmetry.
We resolve the paradox by finding a nonlocal order pa-
rameter that breaks time reversal symmetry. We then
examine the degeneracy of the ground state, which has a
topological origin.

CHERN-SIMONS THEORY

We can conveniently describe 2+1 topological insu-
lators and fractional quantum hall fluids using Chern-
Simons theory. Chern-Simons theory uses an effective
gauge field to describe the mutual statistics of quasipar-
ticles. Since conserved current has no divergence (∂µJ

µ

= 0), in 3 dimensions one can write the current as the
curl of another vector (gauge) field a [6]. Chern-Simons
theory has a topological action that attaches ‘magnetic’
flux to charges. When these charges move around each
other, they pick up an Aharanov-Bohm phase due to the
flux. In this way, the quasiparticles acquire nontrivial
mutual statistics.

The Chern-Simons action for N species of quasiparti-

cles is

SCS =
1

4π

∫
d2xdt

[∑
IJ

ε···aI·KIJ∂·a
J
· −

∑
I

aI · jI

]
(1)

Here the indices are too small to see. The symmetric
N×N integer K matrix describes N the mutual statistics
of N species of quasiparticles with currents JI . Quasi-
particles

∑
I lIa

I are described by the integer vector l.
We can determine the self statistics

θ = πlTK−1l2

of each quasiparticle, and the mutual statistics between
quasiparticles l1 and l2

θ12 = 2πlT1 K
−1l2 (2)

where eiθ is the phase accrued during the exchange.
We can give the quasiparticles electromagnetic charges

by adding a term coupling the internal fields a to the
electromagnetic field A:

L =
−q
2π

ε···tIA·∂·a
I
·

each quasiparticle l has charge

Q = qtTK−1l

and the Hall conductance is

σxy = ν
q2

2π
=
q2

2π
tTK−1t

Chern-Simons theory also gives us a description of the
boundary. The Chern-Simons term εa∂a does not vanish
at the boundary, and gives us edge modes with action [4]

Sedge =
1

4π

∫
dtdx

∑
IJ

[KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ ]

(3)
The number of positive and negative eigenvalues of K
determines the number of left and right movers on the
edge. The matrix V depends on microscopic physics
rather than the bulk properties and determines the ve-
locities of the edge modes. The operator

el
T Φ (4)

creates a quasiparticle l at the edge, where Φ =
(φ1, . . . φN ) [4].
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FIG. 1: The interfaces of the system. The topological insula-
tor (TI), strong pairing insulator, and vacuum are shown in
blue, pink, and gray, respectively. Taken from [4]

.

GAPPING OUT THE INTERFACES

We first consider the boundary between the strongly
paired insulator and the vacuum. We construct the
strongly paired insulator (SPI) by superimposing two
ν = 1

2 FQH states, one of each chirality. Start with a
free electron gas and separate the spin species with a
magnetic field. Then each spin species has opposite chi-
rality. For each spin species, Cooper pair the electrons
to form two effective Laughlin states with bosonic exci-
tations b†↑, b

†
↓. The Cooper pairs have effectively half the

density of the fermions, and twice the charge, so they
have effective filling fraction ν = 1

8 [1]. The strongly
paired insulator then has K-matrix

KSP =

(
8 0
0 −8

)
with 8 and -8 denoting each chirality. We can describe
Cooper pair excitations with quasiparticles l = (8, 0)
(spin ↑) and l = (0, 8) (spin ↓). You can check that these
have charge 2e and bosonic statistics. The Cooper pair
edge modes are then (4) b†↑ = e8iπφ1 and b†↓ = e−8iπφ2 .
The Cooper pairs transform under time reversal as

b†↑ → b†↓ b†↓ → b†↑

so we can choose φ1 and φ2 to transform as

φ1 → φ2 φ2 → φ1

under time reversal.
Next, we determine a perturbation to the edge which

may gap the system without breaking charge or time re-
versal symmetry. A spin flip of two Cooper pairs cer-
tainly does not break either symmetry:

b†↑b↓ + b↑b
†
↓ ∼ cos(ΛT1 KΦ− α(x))

where ΛT1 = (1,−1), and α is an arbitrary function.
Now consider the interface b between the topological

insulator (TI) and SPI (Figure 1). We model the topo-
logical insulator using two ν = 1 electronic quantum hall

states with opposite chiralities [2]. Its K-matrix is

KTI =

(
1 0
0 −1

)
We label the edge modes of the TI φ5, φ6. The creation
operators for electrons on the edge of the TI are ψ†↑ = eiφ5

and ψ†↓ = e−iφ6

Under time reversal, the electrons to transform as

ψ†↑ → ψ†↓, ψ†↓ → −ψ
†
↑

so we choose

φ5 → φ6, φ6 → φ5 + π

The SPI also has edge modes φ3 and φ4 here. We can
write the K matrix for all the modes on edge b as

Kb =

(
KSPI 0

0 KTI

)
with Φb = (φ3, φ4, φ5, φ6). The interaction b†↓ψ

†
↑(ψ↓)

3 +
h.c. conserves charge, but is not time reversal invari-
ant. Under time reversal, the spins in the interaction
are flipped and the term acquires a minus sign. Adding
the time reversed interaction, the sum of the two terms is
both charge conserving and time reversal invariant. We
can write this term compactly as

cos(ΛT2 KΦ− α)− cos(ΛT3 KΦ− α)

where

ΛT2 = (0, 1, 1,−3) ΛT3 = (−1, 0, 3,−1)

This interaction therefore preserves charge and time re-
versal symmetry.

In order for these interactions to create an energy gap,
they must lock each of the fields Φ to a minimum of the
cosine potential. It turns out this happens only when
ΛTi KΛi = 0 for each term [4]. This holds for the two
terms we have considered.

Another thing to consider - although these interaction
terms do not explicitly break the symmetry, they could
cause spontaneous breaking of the symmetry. The sym-
metry is spontaneously broken if there is a local order
parameter that transforms nontrivially under the sym-
metry, and acquires a vev. This condition amounts to
requiring that the Λi are not multiples of any other in-
teger vector (Λi is ‘primitive’) [4]. If Λ was a multiple
of another Λ′, then although cos(ΛKΦ) would be invari-
ant under the symmetry, the order parameter cos(Λ′KΦ)
would not in general be invariant. Λ1, Λ2 and Λ3 are
primitive, so the symmetry is not spontaneously broken
on either edge.
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A PARADOX? AND ITS RESOLUTION

Combining these two interfaces on an annulus leads
to an apparent contradiction. Consider a TI disk sur-
rounded by a SPI annulus, which forms an interface with
the vacuum (Figure 1). This system contains both in-
terfaces above: an inner interface b between the TI and
SPI, and the outer interface a between the SPI and vac-
uum. We showed that both interfaces a and b could be
locally gapped while preserving charge and time reversal
symmetry. It therefore seems as though we have created
a gapped interface (the SPI) between the TI and the
vacuum without breaking any symmetries, which contra-
dicts the fact that the inner disk is a TI: it should have
a gapless edge! How is it that we can gap out both edges
without breaking the symmetry?

Answer: the symmetry is in fact spontaneously broken!
A nonlocal order parameter W , responsible for tunneling
between the two interfaces, breaks time reversal symme-
try. However, the system doesn’t have two ground states
as one expects from breaking time reversal symmery - it
has four. Wang and Levin call this phenomenon weakly
broken symmetry.

To show that time reversal symmetry is in fact broken,
we explicitly construct W . Consider the operator

W ∼ cos(2φ1 + 2φ2 + 2φ3 + 2φ4 + φ5 + φ6)

which can be written

W ∼ cos(Λ1KaΦa + Λ2KbΦb + Λ3KbΦb)

This interaction acquires a minus sign under time rever-
sal. The interactions we considered on each of the edges
lock the terms in the cosine above, so 〈W 〉 6= 0. Further-
more, since the SPI bulk is gapped and the operator W
acts on both edges, W describes a nonlocal tunneling op-
erator. This operator describes a l = (2, 2) quasiparticle
tunneling from boundary b to a, along with an electron
spin flip at boundary b. Since W describes a tunneling
process, it depends exponentially on the width of the an-
nulus ∼ e−D. In the limit that the annulus is smaller
than the correlation length, W becomes a local order pa-
rameter, ‘strongly’ breaking the symmetry in the usual
way.

GROUND STATE DEGENERACY

We would expect a system with spontaneously bro-
ken time reversal symmetry to have a twofold degenerate
ground state. However, the ground state is fourfold de-
generate, which we will see has a topological origin. To
investigate, we consider two nonlocal string operators Al
and Bl shown in Figure 2. Operator A creates a quasipar-
ticle l and its antiparticle l̄, moves l around the annulus,

FIG. 2: String operators A and B on the SPI annulus.
Adapted from [4].

and then annihilates the two particles. Operator B cre-
ates a quasiparticle/hole pair, moves l to the inner edge
and l̄ to the outer edge, and locally annihilates them.
A and B are unaffected by the paths the quasiparticles
take. These two operators don’t commute - they satisfy
[4]

AlBl′ = eθll′Bl′Al (5)

where θll′ describes the mutual statistics of l and l′

(Equation 2). Consider the operator

(Al)
−1(Bl′)

−1AlBl′

Bl′ moves l′ to the inner edge, then Al braids l around l′.
Then l′ goes back to annihilate with its hole and l moves
back around. This gives us the mutual statistics of l and
l′.

By constructing the algebra of string operators acting
on the ground state, we can determine the degeneracy of
the ground state. First, we can decompose the action of
the operator Al of quasiparticle l = (n1, n2) by moving
n1 many quasiparticles (1, 0) and n2 many quasiparti-
cles (0, 1) around the annulus. We define A1 ≡ A(1,0),
A2 ≡ A(0,1). The B string operators are more restrictive
- these operators must create quasiparticles that can be
annihilated locally at the edge. Since the order param-
eter W annihilates l = (2, 2) quasiparticles using a local
electron spin flip, l0 = (2, 2) will do the job. We denote
this operator B0. The mutual statistics of l1, l2, l3 then
determine the algebra of the string operators:

A1B0 = eiπ/2B0A1, A2B0 = e−iπ/2B0A2

(A1 and A2 commute). Since these operators map the
ground state to itself, the ground state must have a de-
generacy of at least four. A more careful analysis shows
that the degeneracy is exactly four [4]. Since the algebra
depends on only the edges and quasiparticle statistics,



4

the groundstate degeneracy is robust against local per-
turbations. This degeneracy is topologically protected.

In the eigenbasis of B0, we can write the four ground
states as |n〉, n ∈ Z4:

B0|n〉 = eiπn/2|n〉
A1|n〉 = |n− 1〉
A2|n〉 = |n+ 1〉

When the annulus has finite width, a time-reversal sym-
metric tunneling term

H1 ∼ (B0)2 + h.c.

perturbs the energy by ε. In the eigenbasis of B0,

H1|n〉 ∼ eiπε|n〉 = (−1)nε|n〉

which splits the ground state subspace into a twofold
degeneracy. As the width D decreases, the splitting of
the levels increases as ∼ e−D.
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