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We explain why a quantum field theory with gauge group SU(2) and an odd number of left-handed
fermion doublets is inconsistent due to the so-called Witten anomaly. The origin of the problem is
that there are physically inequivalent field configurations in the quantum theory that correspond to
the same classical theory. We argue that any gauge group with nontrivial fourth homotopy group
has the same type of inconsistency.

INTRODUCTION

An anomaly is a symmetry of the classical theory that
fails at the quantum level. Here, we are in particular in-
terested in global anomalies, which arise when the parti-
tion function fails to be invariant under part of the gauge
group (the “large” part) which actually yields a different
physical configuration.

Let’s understand this statement. Suppose we have a
disconnected gauge group G: it consists of a subgroup
G0 of transformations that are continuously connected
to the identity–and thus can be written as infinitesimal
gauge transformations–and a disconnected discrete sub-
group which is not. A gauge transformation which is not
continuously connected to the identity as such is called
“large”. It turns out that when this is the case, we can-
not naively obtain our physical space of states by mod-
ding out the theory’s Hilbert space H by the full gauge
group G–doing so would group together states related by
large gauge transformations that are physically distinct
in the full quantum theory. Perhaps in this sense, it is
misleading to really call “large gauge transformations”
gauge transformations at all.

An intuitive way to understand these large gauge
transformations is in the language of homotopy groups.
Basically, two functions are said to be homotopic if they
can be continuously deformed into each other. Homo-
topy groups are a way to classify how one can draw loops
that can be continuously deformed into one another in a
topological space.

In particular, we will be considering the gauge group
SU(2), and the relevant fact for our purposes is that the
fourth homotopy group of SU(2) is nontrivial:

π4(SU(2)) = Z2. (1)

That (1) is true means that SU(2) contains two types
of gauge transformations, those in the trivial homotopy
class that are continuously connected to the identity (the
subgroup I’ve called G0 above), and those in the non-
trivial homotopy class, call them U , which cannot be
connected to the identity by SU(2) transformations.

Witten was the first to understand a global anomaly,
and in his classic paper [4] found that the inconsistency
which had previously puzzled theorists in an SU(2) gauge

theory with an odd number of Weyl fermions was due to
the above over-counting of the physical Hilbert space. In
the following section, we show how this ambiguity arises.
For the reader that requires a review of how to construct
a Lagrangian for Weyl fermions, see an extended discus-
sion in the appendix.

WITTEN’S ANOMALY

Consider the path integral for a gauge theory with G =
SU(2), and a single doublet of left handed fermions,

Z =

∫
dψ dψ̄

∫
dAµ

× exp

[∫
d4x

(
−1

4
Tr F 2

µν + ψ̄i /Dψ

)]
. (2)

Above, D is the Dirac operator for the SU(2) gauge
theory as defined in (9). Performing the integral over the
fermions [5], we find

∫
dψ dψ̄ exp

[
ψ̄i /Dψ

]
= ±(det i /D)

1
2 . (3)

All the trouble is in which sign to take for the square
root. In particular, consider a gauge transformation in
the non-trivial homotopy class of SU(2), AUµ , related to
a gauge transformation in the trivial sector, Aµ, by

AUµ = U−1AµU − iU−1∂µU. (4)

One can show that these gauge transformations will
necessarily lead to the sign difference

(det i /D[Aµ])
1
2 = −(det i /D[AUµ ])

1
2 . (5)

In other words, such a prescription for the sign of the
square root of the Dirac operator is not gauge invariant.
If you’re happy to take this statement as a given, skip
the box below; otherwise, read through for an overview
of the technical details.
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Important technical aside:

Consider the operator on the right hand side of (3),
which is formally a product of half of all the eigen-
values of the Hermitian operator i /D–half because of
the square root. All of the eigenvalues are real, and
for every eigenvalue λ there is an eigenvalue −λ [6].
In choosing which half of the eigenvalues to include
in (3), we may define (det i /D)1/2 to include either
the plus or minus eigenvalue for each pair (λ,−λ).

Just to start somewhere, let’s define (det i /D)1/2

to be the product of the positive eigenvalues for
the particular gauge field Aµ in the trivial sector
of SU(2). Now, imagine varying Aµ → AUµ continu-
ously in field space.

The spectrum of i /D is precisely the same for both Aµ
and AUµ , but it turns out that the individual eigen-
values themselves rearrange along such a variation.
See the figure above for an illustration of such a rear-
rangement, where the sign for the square root of the
Dirac operator is defined by the sign of the product
of the eigenvalues indicated by the solid lines.

This is where we employ a useful piece of super-
math, called the Atiyah-Singer index theorem, to
argue that the number of eigenvalues of the opera-
tor in question that cross zero along such a smooth
variation is always odd. Proving this is beyond the
scope of this paper, but refer to [4] for more de-
tails, or [2] for a different take on the proof. The
basic idea is that the index theorem tells you how to
count zero modes (zero eigenvalues) of the Dirac op-
erator, which one can then relate to the eigenvalue
flow along the variation. This means that you will
always pick up a minus sign going between the two
sectors of gauge transformations, as in (5).

What our considerations above tell us is that
(det i /D)1/2 is odd under the topologically non-trivial
gauge transformation U . In general, for an odd number
of left-handed fermion doublets n, the RHS of (3) be-
comes (det i /D)n/2, and the theory suffers from this sign
inconsistency.

Now that we’ve established the inconsistency, we need
to answer the question of why it’s so bad. To answer this,

consider the partition function for the SU(2) theory with
a single left-handed doublet by plugging (3) into (2),

Z =

∫
dAµ(det i /D)1/2 exp

(
−1

4

∫
d4x Tr F 2

µν

)
. (6)

This would vanish identically because the contribution
of any gauge field Aµ is exactly cancelled by the equal
and opposite contribution of AUµ . Clearly, such a theory
with vanishing partition function is ill-defined.

One can then generalize this result to other gauge
groups. As discussed in the introduction, the way to
identify that SU(2) in four dimensions has a subgroup of
large gauge transformations is to note that its fourth ho-
motopy group is nontrivial. Since π4(SU(N > 2)) = 0,
but π4(Sp(N)) = Z2 for all N , this anomaly holds as
well for an Sp(N) gauge theory with an odd number of
left-handed Weyl fermions in the fundamental represen-
tation.

CONCLUSION

We’ve found that an SU(2) gauge theory with an odd
number of left-handed fermion doublets is inconsistent,
which comes from the observation that the sign for the
square root of the Dirac operator cannot be defined in a
smooth and gauge invariant way.

One application of this result is that a global anomaly
in a chiral gauge theory makes it impossible to formu-
late such a theory consistently on the lattice; the lattice
analogue of the anomaly results in an inconsistency in
defining the fermion measure in the path integral [1].

Appendix A: Weyl spinors

Since the whole content of this paper is the partition
function for a quantum field theory of Weyl spinors, let’s
take some time to understand what a spinor is–just to
make sure we’re all on the same page.

An equation of motion is automatically Lorentz in-
variant if it follows from a Lagrangian that is a Lorentz
scalar. Thus, in quantum field theory we wish to study
the Lorentz transformation properties of quantum fields,
such that we can put them together into a Lagrangian
field theory. A useful way to label representations of the
Lorentz algebra is to first note the fact that the Lie al-
gebra of the Lorentz group splits into two copies of the
SU(2) Lie algebra. We know well how to classify irre-
ducible representations of the SU(2) algebra from quan-
tum mechanics: they are labeled by l = 0, 12 , 1, ..., and
each has dimension 2l + 1 = 1, 2, 3, .... Thus each of the
irreducible representations is classified by the numbers
(s+, s−) where s+ and s− take values 0, 12 , 1, ..., and the
dimension of the irrep is (2s+ + 1) · (2s− + 1).
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A spinor field, by definition, is a field that transforms
as a spinor under Lorentz transformations. The repre-
sentations ( 1

2 , 0) and (0, 12 ) are of dimension 2, and act
on spin-1/2 spinors.

I’ll skip the details of the construction except to point
out that it involves use of the Clifford algebra,

{γµ, γν} = 2gµν , (7)

which is why the matrices γµ show up in the spinor
Lagrangian. The bottom line is that we can construct a
dimension 2 representation of the Lorentz group corre-
sponding to each of the representations (1

2 , 0) and (0, 12 ),
where these representations act on 2-component vectors
called Weyl spinors. These vectors are known as left-
handed or right-handed chiral Weyl spinors respectively,
commonly written ψ and χ̄, where I’ve suppressed the
usual spinor indices.

One can go through the construction of a Lagrangian
for these objects by insisting that it is composed of the
fields ψ and χ̄, their Hermitian conjugates, and first
derivatives of these, and that it is Hermitian and Lorentz
invariant. Then, one promotes the theory to have an
SU(2) gauge symmetry, thus changing partial derivatives
to covariant derivatives and introducing the vector field
Aµ. The final Lagrangian for the massless left-handed
Weyl fermions in an SU(2) gauge theory is

L = ψ̄i /Dψ (8)

where D is the covariant derivative,

Dµ = ∂µ − igAiµ
σi

2
. (9)

We use the Feynman slash notation, /D = γµDµ. One
can combine the 2-component Weyl spinors into a 4-
component vector, called a Dirac spinor Ψ:

Ψ =

(
ψ
χ̄

)
. (10)

A single set of Dirac fermions in the fundamental rep-
resentation of SU(2) (a doublet of Dirac fermions) is ex-
actly the same as 2 left-handed Weyl doublets–this why
the integral (3) is evaluated to be the square root of the
same integral done for Dirac fermions.
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