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Landau Fermi Liquid theory describes a variety of conventional metal, and is robust against many
different interaction. Yet, coupling between Goldstone boson and electron results a singularity in
the infrared limit of boson self energy, which may lead to non Fermi Liquid behavior depending
on the symmetry group generator. Usually this singularity does not appear because the vertex
function vanishes in the infrared limit. However, if the symmetry generator does not commute with
the momentum operator, it is shown that vertex function is finite in this limit. Its effect on the
fermion is also discussed.

INTRODUCTION

The ground state of free fermion system is character-
ized by sharply defined Fermi surface. The occupation
number n(k) jumps from one to zero when k crosses the
Fermi surface. Such dramatic drop is due to the δ peaks
in the spectral function, which is corresponding to the
purely particle-like excitations. In conventional metal,
the interaction between fermion is perturbable from free
fermion case. This means the electrons behaves more or
less the same as one in free case with renormalized parti-
cle weight Z. Such systems are well explained by Landau
Fermi liquid (FL) theory and have same thermodynamics
behavior. For example, the specific heat scales as T and
the resistivity scales T 2.
Although Fermi liquid well describes conventional

metal, experimentalists do find some materials have non
Fermi liquid behavior. The most famous example is prob-
ably the strange metal which appears in high TC mate-
rial when temperature is higher than the superconducting
critical temperature. Such system behaves like metal but
with a resistivity scales linearly as T instead of T 2. This
behavior cannot be captured by FL theory. Therefore it
is interesting to seek for microscopic mechanism that can
destroy the Fermi surface, which may possibly explain
the strange metal and leads to other exotic excitation
and thermodynamics behavior.
Mathematically, when interaction is turned on, the

property of the fermion should be corrected by the self
energy. The full single particle propagator is

G =
1

ω + i0+ − ξk − Σ(k, ω)
(1)

The information of interaction is entirely encoded in
the self energy Σ(k, ω). The imaginary part of the self
energy can significantly effect the spectral function by
broadening or even destroy the delta peak. If we assume
the pole of the Green function is a simple pole, the quasi
particle weight Z, defined as the residue of the pole, is
1/(1 − ∂ωΣ(ω)). In the free electron system, Σ(ω, k) is
just zero, and therefore Z=1. However, the self energy
can make Z zero, which is a sign that quasi particle pic-
ture breaks down. Moreover, if this pole occurs at the

original Fermi surface, the system’s thermodynamics be-
havior at low temperature will be deviated from that of
FL.

It has been many research suggesting that coupling
between electrons and gapless boson can possibly lead to
such effect. Gaplessness imposes a strong restriction on
the origin of the bosons. The gaplessness should be either
obtained by fine tunning, or be protected by physical
reason, which means the bosons should be gauge boson
or Goldstone boson.

This paper will follow Watanabe’s approach [1] to
discuss the coupling between Goldonstone bosons and
fermions, and the condition that such coupling can pos-
sibly lead to non FL behavior.

COUPLING BETWEEN GOLDSTONE BOSON
AND FERMION

We start with a general Hamiltonian in term of fermion
field ψ and boson field φ

H = H0,e(ψ,ψ
†) +H0,b(φ) +Hint (2)

It is possible to obtain this Hamiltonian from purely elec-
tron system by Hubbard Stratonovich transformation.
Here H0,e is the bare electron propagator, H0,b is the
bare boson propagator and Hint describes the coupling
between these two. Each term should be commute with
the momentum and the generator of symmetry group.
This requirements impose strong restriction on the form
of coupling between fermion and boson after the symme-
try is spontaneous broken.

In general, the boson field has n components, and
expectation value of one components, denoted as σ is
nonzero due to spontaneous symmetry broken and the
other components, denoted as π, are small so that we
can do perturbation theory latter. Due to symmetry
argument, the leading order of the interaction between
electrons and π modes can be written in the following
form:

Hint(ψ,ψ
†, π) = −[iπαQα,H

′
0,e] (3)
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where Qα is the unbroken symmetry generator associated
with πα. H ′

0,e is the free fermion Hamiltonian including
the part that fermion couples to σ mode.

H ′
0,e(ψ,ψ

†) = H0,e(ψ,ψ
†) +Hint(ψ,ψ

†, σ) (4)

The result in equation(3) can be seen as follows. We
can rotate (uniform transformation) the boson vector so
that it looks that transformed fermion is only coupled to
the σ mode, but it is the same interacting Hamiltonian
because of the symmetry. The transformed fermion oper-
ators depend on the rotation angle, which is determined
by the original πα.
The single fermion operator can be labeled by the mu-

tual eigenstates of H ′
0,e and momentum. The minimal

coupling between fermions and π modes is

Hint(ψ,ψ
†, π) =

∑
n,n′,a

∫
ddkddk′

(2π)2d
vαk,n,k′,n′ψ

†
k,nψk′,n′πα

(5)
This is just standard vertex term in the language of field
theory. The vertex function vαk,k′,n,n′ can be obtained
from:

vαk,n,k′,n′ = 〈0|ψn,kHint(ψ,ψ
†, πα)ψ†

n′,k′ |0〉 (6)

We can plug in Eq 3 into above expression and get:

vαk,n,k′,n′ = −iπ 〈0|ψn,kQαψ
†
n′,k′ |0〉 (εn′,k′ − εn,k) (7)

Here we arrive the main result of this section. The
vertex function can possibly has two different behavior
in the limit that n = n′ and k − k′ → 0. We know
that εn′,k′ − εn,k approaches zero as k − k′ if we assume

quadratic band. So, if 〈0|ψn,kQαψ
†
n′,k′ |0〉 is not singu-

lar, the vertex function vanishes at this limit. However,
if this factor diverges, it is possible that the vertex func-
tion remains finite, which contributes to many interesting
physics that will be discussed in next section.
Now we need investigate the factor carefully to

study its behavior in the limit k − k′ → 0. There,
〈0|ψn,kQαψ

†
n,k |0〉 is just the expectation value of the

symmetry generator Qα in the single particle picture,
which can be not well defined for some cases, especially
when Qα does not share the same eigenstate with mo-
mentum, namely Qα does not commute with momentum.
More rigorously, we can consider the following factor:

〈0|ψn,k[Qα, e
ip̂a]ψ†

n,k′ |0〉 = 〈0|ψn,kQαψ
†
n,k |0〉 (e

ik′a−eika)
(8)

When [Qα, p] 6= 0, the left hand side of equation should
be some finite value. However, we know that (eik

′a−eika)
vanishes as a(k − k′), indicating that 〈0|ψn,kQαψ

†
n,k |0〉

must diverge as a(k− k′). If this is the case, the infrared
limit of the bare vertex function should also be finite since
this divergence exactly cancels that factor in (εn′,k′−εn,k)
that goes to zero in the limit.

a b

FIG. 1. a: the self energy for bosons; b: the self energy for
fermions

Hence we have a general criterion on the condition that
vαk′,n,k,n does not vanishes when k − k′ → 0. That is
the associated symmetry generator Qα does not com-
mute with momentum operator. An immediate example
of symmetry generator of this kind is the angular momen-
tum. Such effect is important in the system with nematic
order [2], which means the spacial rotation symmetry is
spontaneously broken.

THE EFFECT OF NON VANISHING VERTEX
FUNCTION IN THE INFRARED LIMIT

Now we discuss the consequence of the non vanishing
vertex function. Basically this property make the imag-
inary part of boson self energy diverge with ν/|q| in the
infrared limit. When plugging the self energy into the
Dyson equation for the boson propagator, we can obtain
an over damping pole, which implies the particle-like bo-
son description break down. If we further calculate the
fermion self energy, we can find the imaginary part goes
ωd/3, where d is the dimension of the space, when ω
approaches zero. This indicates that the quasi particle
peak disappears when d ≤ 3 and the system cannot be
captured by FL theory.

To explicitly show this, we define the free bosonic prop-
agator and fermionic propagator.

D0(ν, q) =
1

ν − ρsq2

G0(ω, q) =
1

ω − ξk

(9)

We need calculate the correction to D0(ν, q) at one loop
level. The self energy is corresponding to Feynman dia-
gram drawn in Fig 1(a)

Πab(ν, q) =

∫
ddk

(2π)d+1
dωvαk,k+qvk+q,kG

0(ω, k)G0(ω+ν, k+q)

(10)
The integration of ω can be done by contour integration.
Then one can find:

ImΠab(ν, q → 0) ∼ −ν
q

kd−3
f

m
vαkf ,kf

vαkf ,kf
= −Aν

q
(11)

As we can see it has 1/q divergence as q → 0 if vαn,kf ,n,kf

is not zero, which happens only when [Qα, p] 6= 0. We
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can plug it into the Dyson equation to obtain the new
boson propagator:

D(ν, q) =
1

ν − ρsq2 + iAν
q

(12)

Now we need use the updated boson propagator to
calculate the fermion self energy(Fig1(b)):

Σ(k, ω) =

∫
ddqdν

(2π)d+1
vαk,k+qv

α
k+q,kD(q, ν)G0(ω+ ν, k+ q)

(13)
Within certain approximation, it can be shown that the
imaginary part scales as ωd/3 (refer to appendix for de-
tail calculation). When d is small than 3, the derivative,
which appears at the denominator of the quasi particle
weight, diverges at ω → 0. Therefore Z is zero for this
case, and the quasi particle picture does not hold any-
more. A more systematic study on this effect can be
found here[3].
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Calculating the fermion self energy

In the infrared limit, the fermion self energy is

Σ(k, ω) ∼
∫

ddqdν

(2π)d+1
vαk,k+qv

α
k+q,kD(q, ν)G0(ω + ν, k + q)

∼
∫

ddqdν

(ν − ρsq2 + iAν
q )(ω + ν − ξk+q + i0+)

∼
∫

1

(ν − ρs

A2 q3(q − iA))(ω + ν − ξk+q + i0+)
(14)

Here we are only interested in the most singular part
therefore only the leading order of q is kept. The inte-
gration over ν can be carried out most easily in Masubara
frequency at zero temperature by contour integration.

Then the self energy becomes:

Σ(k, ω) ∼
∫

θ(ω − ξk)

ω + iρsq3

A − ξk −mkqcosθ
qd−1dqcosθdθ

(15)
We can integrate out θ first. At the original Fermi sur-
face, the self energy becomes

Σ(k, ω) =

∫
θ(ω)ln(ω + i

ρq3

A
)qd−1dq (16)

We can expand the log function in the infrared limit, and
the imaginary part of the self energy is

Im(Σ(k, ω)) ∼ θ(ω)

∫
q3

ω
qd−1dq ∼ ωd/3 (17)


