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In this paper, I discuss Morse Homology and illustrate how it may be a useful and natural
mathematics for studying the topology of the theory space of RG flows. It is meant to be a survey
of the mathematical concepts and results, rather than a development of the topic or even a detailed
explanation of the topic.

INTRODUCTION

A recently developed method to study the space of
RG flows uses tools from Morse homology [1]. This novel
method of studying the theory space structure may pro-
vide fruitful for a number of reasons, perhaps the most
important being that it may allow for a deeper under-
standing of the C-theorem in any dimension.

I aim to develop the motivation and some of the back-
ground necessary to understand Morse homology. Along
the way, I point out theorems and corollaries that make
this math well defined and suitable to be used for the
purpose of studying RG flows. As such, the majority of
the paper is focused on the mathematics. However, the
reader may be able to make many connections to RG
flows along the way if they have a sufficient background.

In this paper all functions f will be assumed to be
smooth functions over a manifold M such that f : M →
R. To guide your intuition, f should be thought of as
a height function, so that level sets on M are given by
f−1(c), where c is the “height”. Figure 1 depicts this
situation.

FIG. 1: Torus with level sets drawn in. The upmost points
correspond to the largest heights. Image from [2].

CLASSICAL MORSE THEORY

Definition: The set of critical points of a function
f is defined to be the set Cr(f) ≡ {p ∈ M | dfp = 0}.
The function is said to be a Morse function ⇔
∀ p ∈ Cr(f) ⇒ |Hp(f)| 6= 0. That is, the Hessian based
at point p of the function f is non-degenerate. [5]

Morse Lemma: Let p be a critical point of a Morse
function f on an n-dimensional manifold. Then locally,

f = f(p)−(y1)2−(y2)2−. . .−(yλp)2+(yλp+1)2+. . .+(yn)2

(1)

λp happens to be an invariant over the set of all Morse
functions on M , so already we have some notion of topo-
logical information. λp is called the index of the Morse
function and happens to be the number of negative eigen-
values ofHp(f) (i.e. the number of ways to independently
descend the manifold at point p.) In Figure 1 the topmost
point has λp = 2; the two interior points have λp = 1;
the bottommost point has λp = 0.

Since each critical point of a Morse function is non-
degenerate, we can decompose the tangent space of a
manifold into subspaces constructed by taking linear
combinations of both the negative and positive eigenvec-
tors independently:

TpM = T spM ⊕ TupM (2)

where T spM = span {vλi
| λi > 0};

TupM = span {vλi
| λi < 0}.

Notice that dim(TupM) = λp and dim(T spM) = n− λp

Corollary: The set of non-degenerate critical points
are isolated. This may not be the case if degeneracy is
allowed.

Corollary: A Morse function on a compact manifold
has a finite number of critical points. This will be useful
when constructing a well defined boundary operator. In
particular, it forces the coefficients of the terms in the
boundary operator to be finite. If degeneracy is allowed,
care has to be taken (refer to the Section on Morse-Bott
Homology).
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MORSE-SMALE HOMOLOGY

Define a function ϕ to be a gradient flow of a Morse
function which satisfies:

1. ϕ : R×M →M

2. ∂
∂tϕ(t, x) = −∇f(ϕ(t, x))

3. ϕ(0, ∗) = idM

Definition: the unstable and stable manifolds of a
manifold M are constructed by taking limits of ϕ:

Wu
p = {x ∈M | lim

t→−∞
ϕ(t, x) = p} (3)

W s
p = {x ∈M | lim

t→+∞
ϕ(t, x) = p} (4)

Since TWu
p
∼= TupM ⇒ dim(Wu

p ) = λp. It is useful to
think of Wu

p as a λp dimensional open ball, especially if
you want to think of the stable and unstable manifolds as
giving a CW-structure over M . It is also useful to think
of the unstable manifold as the collection of flow lines
flowing out of a critical point and the stable manifold as
the collection of flow lines flowing in to a critical point.
So, flows will start at unstable manifolds and flow to
stable manifolds. Figure 2 depicts this situation.

FIG. 2: Torus with level sets (gray) and a few examples of
the stable and unstable manifolds. Image from [3].

Definition: If the stable and unstable manifolds of a
Morse function all intersect transversally, the function is
called Morse-Smale.

Intuitively, this means that at any point, the tangent
spaces of the stable and unstable manifolds have enough
information to construct the entire tangent space at that
point. For example, the stable/unstable manifolds drawn
for the height function in Figure 2 don’t quite satisfy the
transversality condition. The metric here can be per-
turbed by imagining slightly tilting the torus. Figure 3
depicts this.

It turns out that Morse-Smale functions flow out of
unstable critical points to stable points of strictly lower
indexes. This fact can be proven using the following
corollary and is important for constructing a well defined

boundary operator. The following corollary itself can be
proven using the transversality condition of the stable
and unstable manifolds and by a simple set theoretic ar-
gument.

Corollary: For Morse-Smale functions, and for flows
starting at critical point p and ending on critical point q:

dim(Wu
p ∩W s

q ) = λp − λq (5)

Kupka-Smale Theorem: For any metric on a mani-
fold M , the set of smooth Morse-Smale functions is dense
in the space of all smooth functions on M . Also, one can
always find a Riemannian metric on M to make a Morse
function into a Morse-Smale function.

FIG. 3: “Tilted torus” with level sets (gray) and a few exam-
ples of transverse stable and unstable manifolds. Image from
[3].

Definition: For flows going from p → q the Moduli
Space is defined as:

M(p, q) = (Wu
p ∩W s

q )/R (6)

Corollary: λp − λq = 1 ⇒ M(p, q) is a compact
0-dimensional manifold. A classification theorem states
these manifolds are finite (i.e. there is a finite number of
flows going from two critical points which differ in index
by 1).

Definition: The boundary operator can now be de-
fined. Ck ≡ free Abelian group generated by critical
points of index k. Then, ∂k : Ck(f)→ Ck−1(f). Specifi-
cally:

∂k(p) =
∑

q∈Crk−1(f)

#M(p, q)q , p ∈ Ck(f) (7)

#M(p, q) ∈ Z is defined to be the signed number of
flow lines from p→ q.

One of the final ingredients into showing this is a well
defined homology is to show that ∂2 ≡ 0. I consider
points p and q such that λp = i + 2 and λq = i. Rather
than go through the steps of the derivation, I hope to
give an intuition, albeit a very tenuous one, for why this
is true. We need to rely on a few results:
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• M(p, q) can be compactified to M(p, q)

• The boundary of M(p, q) turns out to be equivalent
to the action of ∂2. In other words,
∂2p ∼ #∂M(p, q)

• M(p, q) is an oriented 1-manifold with boundary,
so its signed number of boundary points is zero

Morse Homology Theorem: The homology of the
Morse-Smale chain complex (C∗(f), ∂∗) is isomorphic to
the singular homology on M .

Corollary: M =
∐
pW

u
p =

∐
pW

s
p . i.e. the stable

and unstable manifolds contain all the topological infor-
mation of M .

MORSE-BOTT HOMOLOGY

I will briefly mention a generalization of Morse-Smale
Homology to the case where the critical points are non-
isolated. In other words, f will have an infinite number
of critical points. In this case, the Morse Homology the-
orem does not apply because the boundary operator is
no longer well defined. Now, Cr(f) =

∐
i Ci where Ci

are connected submanifolds of M such that df |Ci ≡ 0. If
Hp(f) is non-degenerate in the normal direction for all
p ∈ Ci then f is called Morse-Bott.

By the Kupka-Smale theorem, a Morse-Bott func-
tion can be perturbed to a Morse-Smale function, which
means the Morse Homology theorem can be applied to
this perturbed function! Refer to [4] for the explicit form
of the perturbed function.

RG FLOWS

Finally we come to RG flows and how they fit into
the picture. I will discuss the math as presented above,
and make no modifications in the math in attempting to
bridge the gap between the homology and physics.

∂tϕ(t, x) should be taken to be analogous to the usual
beta function, so if we are to directly apply this math, we
are actually assuming that RG flows are determined by
the gradient flow of some function. To see this, consider
condition (2) of ϕ:

∂

∂t
ϕ(t, x) = −∇f(ϕ(t, x))

The dimension of Wu
p can be thought of as the num-

ber of relevant operators at a critical point in the theory
space of RG flows. Indeed, each relevant operator will
flow from a UV → IR point without losing the majority
of its information.

So, we should be able to count the number of flows
between two points, that differ in their number of relevant
operators by 1, by considering the moduli space of the
flows. This would give us information on π0 of the RG
space.

When we have an instance of a conformal manifold, we
actually need to use the tools provided by Morse-Bott
theory. In this case, each Ci should be thought of as a
conformal manifold.
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