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Witten’s framework for the Wess-Zumino chiral effective action, as described in [3], is reveiwed.

INTRODUCTION

This note reviews Witten’s discussion of the effective
field theory for QCD in [3]. It begins with the necessary
background on chiral perturbation theory, as presented
in [2] and a myriad of other literature. We find that the
lowest order action has too much symmetry, necessitating
the addition of a “WZW term”. After studying a simple
analogue of our problem, we exhibit Witten’s geometric
derivation of the quantization of the WZW action [3].

CHIRAL SYMMETRY BREAKING

The Lagrangian density for QCD is given in terms of
Dµ = ∂µ − igAµ and Fµν = i[Dµ, Dν ]/g as

L = − 1
2 tr(FµνF

µν) + qi /Dq. (1)

The quark field q = (q1, . . . , qnf
)T is taken to have nf

massless flavors in the fundamental representation of the
gauge group SU(nc). The spinors may be resolved into
chiral components q = qR + qL, where qR/L = PR/Lq
and PR/L = (1 ± γ5)/2. Recalling {γ5, γµ} = 0, we find

that qLi /DqR = q†PLγ
0iDµγ

µPRq = qi /DPLPRq = 0 and
similarly qRi /DqL = 0. We may therefore rewrite (1) as

L = − 1
2 tr(FµνF

µν) + qRi /DqR + qLi /DqL. (2)

This is manifestly invariant under the independent global
transformations qR/L → gR/LqR/L for gR/L ∈ U(nf )R/L.
The flavor chiral symmetry group may be decomposed as

SU(nf )R ⊗ SU(nf )L ⊗ U(1)V ⊗ U(1)A.

The vector subgroup V corresponds to gR = gL, and the
axial subgroup A corresponds to gR = g†L.

To spontaneously break the SU(nf )A symmetry, the
condensate qq acquires a nonzero vacuum expectation
value 〈0|qq|0〉 = 2vnf . Since qq = qLqR + qRqL, which
follows from qRqR = q†PRγ

0PRq = qPLPRq = 0 and
qLqL = 0, it is clear that the vacuum is invariant under
vector but not axial rotations. This results in the chiral
symmetry breakdown SU(nf )R⊗SU(nf )L → SU(nf )V .

In reality, chiral symmetry is only approximate, as it is
explicitly broken by quark masses. The broken symmetry
generators are accompanied by light “pseudo-Goldstone”
bosons. SU(2) flavor symmetry is better than SU(3) due
to the higher s quark mass, which is better than SU(4)
due to the much higher c quark mass. This explains the
mass gap between the pion triplet and the four kaons and
eta, and between this octet and next lightest mesons.

EFFECTIVE FIELD THEORY

We may construct a low-energy effective Lagrangian
from the spacetime fluctuations of 〈qq〉. To that end, we
define 〈qLj(x)qRi(x)〉 = vuij(x), or simply u = 〈qRqL〉 /v
with the spinor and color degrees of freedom traced out.
We can write the SU(nf ) matrix u as u(x) = e2iφ(x)/f ,
where φ(x) = taφa(x). The Lie generators ta are in the
fundamental representation, the meson fields φa are the
n2
f − 1 Goldstone bosons arising from the spontaneously

broken axial symmetry, and the pion decay constant f
sets the scale of the effective theory at 4πf ∼ 1 GeV.

The effective theory must share the same symmetries
as (2). Notice u→ gRug

†
L when qR/L → gR/LqR/L. It is

therefore useful to define rµ = iu∂µu
† and lµ = iu†∂µu.

By cyclicity of the trace, the trace of a product of rµ’s or
lµ’s is invariant under chiral rotations. By differentiating
uu† = u†u = 1, note that rµ = r†µ and lµ = l†µ. It is also
clear from the exponential expansion of u and cyclicity
of the trace that 1

2f tr rµ = tr(uu†∂µφ) = ∂µ trφ = 0 and
similarly tr lµ = 0. The lowest order effective Lagrangian
which respects chiral symmetry is therefore

Lσ = 1
4f

2 tr(rµr
µ) = 1

4f
2 tr(∂µu∂

µu†). (3)

Taking tr(tatb) = 1
2δ
ab, the prefactor 1

4f
2 is required to

correctly normalize the kinetic terms. Indeed, we can see
by expanding the exponential that

Lσ = tr(∂µφ∂
µφ) + 1

3 tr([φ, ∂µφ][φ, ∂µφ])/f2 + · · ·
= 1

2∂µφ
a∂µφa − 1

6f
abef cdeφa∂µφ

bφc∂µφd/f2 + · · · .

The Lagrangian (3) is also invariant under u → uT ,
which represents charge conjugation if we appropriately
identify the particles in terms of the fields. For nf = 2,
we have q = (u, d)T and 2ta = σa with σa the Pauli
matrices, and we define

2φ =

(
π0

√
2π+

√
2π− −π0

)
.

For nf = 3, we have q = (u, d, s)T and 2ta = λa with λa

the Gell-Mann matrices, and we define

2φ =

π0 + η/
√

3
√

2π+
√

2K+
√

2π− −π0 + η/
√

3
√

2K0

√
2K−

√
2K

0 −2η/
√

3

 .

The final discrete symmetry we need to check is parity
invariance. Under parity, ~x→ −~x and q → γ0q so that

qRqL → PRγ
0qq†γ0PLγ

0 = γ0PLqq
†PR = (qRqL)†.
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Hence u → u†, or equivalently φa → −φa. That is, the
Goldstones are pseudoscalars. Although (3) is invariant
under both ~x → −~x and φa → −φa, (2) is invariant
only under their combined action of parity. To describe
an interaction like K+K− → π0π+π− in which an even
number of mesons decays into an odd number, we need
to add a term to Lσ which lifts the redundant symmetry.

MAGNETIC MONOPOLE ANALOGY

An analagous situation occurs in the case of a particle
constrained to move on a two-sphere of unit radius. The
Lagrangian is Lf = 1

2mẋ
2 + λ(x2 − 1) with x =

√
xixi,

which yields the Euler-Lagrange equations mẍi = 2λxi.
Contracting with xi gives 2λ = mẍixi = −mẋ2, where
we used the constraint x = 1 and its second derivative,
so the equations of motion are mẍi + mẋ2xi = 0. Lf is
invariant under both t→ −t and xi → −xi. Suppose we
want it to be invariant only under the combined action
t→ −t, xi → −xi. We begin with a simple modification
of the equations of motion which realizes our goal,

mẍi +mẋ2xi = gεijkẋjxk. (4)

In order to derive (4) from an action, introduce the
vector potential Ai = εijknjxk/(x(x+ nlxl)), where ~n is
any unit vector. Then εijk∂jAk = xi so that

gεijkẋjxk = g(δikδjl − δilδjk)ẋj∂kAl = g(ẋj∂iAj − Ȧi),

which would be the Euler-Lagrange terms associated to
gẋiAi but for the singularity at xi = −ni. An action for
the closed trajectory ∂D is therefore Sf + Φ±, where

Φ± = ±g
∫
D±

dΣ = g

∫
∂D

dxiAi (5)

by Stokes’ theorem. Here ∂D bounds the region D+ in a
counterclockwise manner, and D− in a clockwise manner.

This action is well-defined by the lefthand side of (5).
The trade-off is that it is nonlocal and ambiguous. The
path integral is consistent only if eiΦ+ = eiΦ− . That is,

Φ+ − Φ− = g

∫
S2

dΣ = 2πn (6)

for integer n. The integral is simply 4π so that g = n/2.
This is in fact the Dirac quantization condition, as Ai is
the potential due to a magnetic monopole at the origin.

QUANTIZATION OF THE WZW ACTION

A local SU(nf )R transformation u(x) → eiε(x)u(x),
where ε(x) = taεa(x), yields the infinitesimal variations
δu = iεu and δrµ = ∂µε+ i[ε, rµ] for small ε. Thus

δ tr(rµ1 · · · rµn) =

n−1∑
k=0

σk tr((∂µ1ε)rµ2 · · · rµn) (7)

by cyclicity of the trace, where σ = (µ1 · · ·µn) permutes
the indices. Using (7) and integrating by parts gives us
δSσ = − 1

2f
2
∫
d4x tr(ε∂µr

µ). Since ∂µr
µ is traceless, the

n2
f − 1 conditions δSσ = 0 are equivalent to the equation

of motion 1
2f

2∂µr
µ = 0. Now the modification

1
2f

2∂µr
µ = 5gεµνλσr

µrνrλrσ (8)

violates ~x → −~x and φa → −φa while respecting their
combination. The former sends rµ → rµ, and the right-
hand side picks up a minus sign since εµνλσ = −εµνλσ.
The latter sends rµ → lµ = −u†rµu, so the lefthand side
picks up a minus sign after multiplying through by u on
the left and u† on the right.

An action which reproduces (8) is Sσ + Γ±, where

Γ± = ±g
∫
D±

d5x εijklm tr(rirjrkrlrm). (9)

Γ± vanishes for nf = 2, so assume nf ≥ 3. Here D± are
complementary five-discs bounded by spacetime, which
we imagine as compactified into a four-sphere. Note that

εijklm∂
i(rjrkrlrm) = εijklm∂

i(∂ju∂ku†∂lu∂mu†) = 0

by antisymmetry of εijklm and equality of mixed partials.
Then by (7), integration by parts, and Stokes’ theorem,

δΓ± = ±5g

∫
D±

d5x εijklm∂
i tr(εrjrkrlrm)

= 5g

∫
d4x εµνλσ tr(εrµrνrλrσ).

As εµνλσr
µrνrλrσ is traceless by antisymmetry of εµνλσ

and cyclicity of the trace, δ(Sσ + Γ±) = 0 implies (8).
By analogy with (6), we need eiΓ+ = eiΓ− . That is,

Γ+ − Γ− = g

∫
S5

d5x εijklm tr(rirjrkrlrm) = 2πn (10)

for integer n. The integral is 480π3 times the winding
number of the map u : S5 → SU(3) [1]. It follows that
g = n/(240π2). Using εijklm∂

i(∂jφ∂kφ∂lφ∂mφ) = 0 and
Stokes’ theorem, we obtain the leading order WZW term

Γ± = ±g 25

f5

∫
D±

d5x εijklm∂
i tr(φ∂jφ∂kφ∂lφ∂mφ) + · · ·

=
2n

15π2f5

∫
d4x εµνλσ tr(φ∂µφ∂νφ∂λφ∂σφ) + · · · .

It turns out that a correct description of QCD couplings
to QED fixes n = ±nc, where nc is the number of colors.
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