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The Fractional Quantum Hall effect is a topological phase of matter meaning that it is character-
ized by certain properties relating to topology. Of notable importance is the existence of quasiparticle
excitations known as anyons with unusual exchange statistics. Methods using quantum information
and entanglement have been used to characterize the system. Since it is the low energy, long range
physics that is of interest and it is mappable to a 1-D problem, the Density Matrix Renormalization
Group method is viable.

INTRODUCTION

The general Quantum Hall Effect (QHE) involves the
study of 2+1 D electrons in strong, constant magnetic
fields, where experimentally it is observed that the con-
ductance gets quantized, among other things.[1] Under
certain conditions, of magnetic field strength and num-
ber density, we get the Fractional Quantum Hall effect
(FQHE).[2] The FQHE ground states have quasi-particle
excitations that can be anyons, which means that the
many-body wave function doesn’t transform under ex-
change like with bosons or fermions (+1 or -1), but in-
stead it acquires a “statistical” complex phase, as in
the Ahronov-Bohm effect or the Berry phase.[3] Some of
these quasi-particles can be non-abelian anyons or “non-
abelions”, meaning that exchanges not only change the
phase of the wave function, but can take the wavefunc-
tion to another degenerate state.[4] This degenerate sub-
space of states (and operations upon it) can be described
by non-commutative matrices, hence non-abelian. Kitaev
showed that non-abelian particles can be used for univer-
sal quantum computing.[5]

Normally, one solves the system using the classical
method of exact diagonalization (ED), which just means
find the eigenvalues and eigenfunctions. In the past 5
years, these studies have been accelerated by the use
of the Density Matrix Renormalization Group (DMRG)
method, as have been many systems that are 1D or that
can be mapped to 1D.[6] DMRG is a way of solving the
system by throwing away degrees of freedom using entan-
glement and density matrices. It is a variational method
that gets you the ground state energy of a system. The
ground sate and the operators (Hamiltonian) can be put
into a form known as Matrix Product States or Opera-
tors, that is, MPS or MPO, respectively.[7]

THE FRACTIONAL QUANTUM HALL EFFECT

To study the entanglement, specifically the bi-partite
entanglement of a system, or self-entanglement, one di-
vides the system, in the state ψ, into two parts A and
B, in either position (real) space or some spectral (e.g.
momentum) space. Specifically, from the density matrix,

ρ = |ψ〉〈ψ|, one calculates the reduced density matrix of
one part of the system, say ρA, (eq. 1) then this ma-
trix is diagonalized to give the eigenvalues, called the en-
tanglement spectrum. Chronologically around 2006, this
spectrum was not paid much attention in regards to the
study of topological phases of matter, instead one would
calculate some specific function of the spectrum called
the entanglement entropy. It has been shown that for
many systems the entanglement entropy follows an area
(boundary) law. Specifically, in 2+1 for the FQHE, the
entanglement entropy grows linearly in the boundary, L,
for large system size but has 1

Ln terms for finite size (eq.
3).[8] The entanglement entopy is calculated using the
Von Neumann entropy, S in eq. 2 borrowed from stat
mech. for quantum information theory. For part A of
the system:

ρA = trB [ρ] =
∑
B

〈B|ρ|B〉 (1)

S = tr[ρA log ρA] =
∑
i

ρAi log ρAi (2)

S = γ + cL+O(
1

L
) (3)

Kitaev and Preskill gave one of the first descriptions
of the significance of a term in the entanglement entropy
called the topological entanglement entropy (TEE), γ.[8]
It is toplogical because it does not depend on the ge-
ometry, that is, shape of the system, but only on the
specific quantum phase we are in. The TEE is related to
another quantity called the quantum dimension of parti-
cles in a conformal field theory (CFT) for the boundary
(edge). Later, Li and Haldane related the real space en-
tanglement spectrum to the edge states of the Quantum
Hall system, which are described by the aforementioned
CFT.[9] A heuristic explanation is that cutting the sys-
tem in two is like introducing a false edge.

To understand how one uses DMRG to help with the
quantum hall effect, first we discuss the structure of its
free single particle spectrum, as if the particles did not
interact with each other. This is like in eq. 4 below,
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but with V (|ri − rj |) = 0, where we have electrons with
charge, e, and mass, m, and a constant magnetic field
with vector potential A. Then, the states of the systems
would just be tensor products of all the individual parti-
cles states. Basically, it is your garden-variety quantum
qualifying exam problem, solve in 2D a single spin-less
particle in a constant perpendicular magnetic field to get
the famous Landau Levels where each level has a bunch
of degenerate states (see Figure 1). Solving the problem
using algebraic methods gives two types of creation and
annihilation operators, one that jumps to other Landau
levels (increasing cyclotron energy eigenvalue) and an-
other that jumps between degenerate states (increasing
momentum eigenvalue), so this is a 2-D spectral space,
as one might expect.

Depending on the geometry of the surface, which
will suggest a certain gauge potential choice, one may
use orbital or transverse momentum (sphere/plane or
torus/cylinder) as a good quantum number for the de-
generate orbitals (states) in each Landau level. One must
keep in mind that putting the system on a different geom-
etry may be experimentally difficult, for example a mag-
netic monopole is needed to get a nice radial magnetic
field on a sphere. So, geometry is a theoretical device in
many cases. Also, in a real system, the level degeneracies
are huge, approximately infinite, but for a finite model
system they can be manageable. Each Landau level is
separated by the cyclotron energy for the problem. In
Figure 1, we see that FQHE states can be described by
a filling fraction, ν, which is the number of electrons di-
vided by the number of orbitals in all Landau levels up
to the lowest filled one.

H =
∑
i

(pi + eA/c)2

2m
+
∑
i<j

V (|ri − rj |) (4)

So, we have a practical basis of states to work with that
gives us nice mental pictures. One expects the true eigen-
functions to be a sum, possibly infinite, of tensor prod-
ucts of single particle Landau states, whereas in spin 1/2
chains we instead have tensor products of spin up or down
states. But is it realistic to perturb around free electrons
for the Coulomb interaction? There is an interesting pa-
per by Ye and Sachdev, that shows the Coulomb poten-
tial to be a dangerously irrelevant operator with a non-
zero fixed point that is sensitive against disordered (ran-
dom) perturbations.[10] Dangerously irrelevant means
that it can contribute to long range physics, such as the
topological properties.

Now, by rotation invariance of the Hamiltonian, a
group theoretical analysis of angular momentum says
that the ground state is unique on an infinite plane or the
sphere and of total angular momentum zero. However,
it has been shown by Wen et. al. that on surface with
higher number of holes (genus, g > 0), like the torus,
there is topological degeneracy (different from Landau

level degeneracy) for the Fractional Quantum Hall ef-
fect. This topological degeneracy grows according to a
power related to the genus, which is a topology depen-
dent quantity.[11] We can use the topological methods
that have been discussed in this paper to classify each
of the phases of the FQHE and look for experimentally
measurable quantities.

ΔE=hω/2π

L=0

L=1

X X X

X X

FIG. 1: Each Landau level is separated by the cyclotron
energy with ω = qB

mc . An X marks the location of an
electron. This filling of one and a third levels gives

filling fraction ν = 1 + 1
3 = 4
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Different QHE states are distinguished by filling frac-
tion. If the fraction of an experimental sample is an
integer, then we might get the Integer Quantum Hall ef-
fect (IQHE). Basically, the electrons are stuck in a filled
Landau level, so they cant jump to the next Landau or
Zeeman level, so the conductance goes to zero. However,
the Hall conductance (off-diagonal part of the conductiv-
ity tensor) flattens to some plateau. It can also happen
even when the Landaul level filling is fractional (FQHE),
but the explanation is not so concrete. The system is
thought to be in a collective (entangled) ground state,
brought upon by interactions between particles. Suppos-
edly, these are a type of quantum phase of matter that is
an incompressible fluid, such that adding pressure or en-
ergy does not change the density or filling fraction, hence
you also get zero conductance and plateaus for the Hall
conductance.[12]

So, remember from stat mech, that low energy states
for electrons will be favored if the experimental temper-
atures are very small compared to the relevant energy
scales I will mention. That is the Fermi distribution has
a sharp looking drop. Second, imagine the magnetic field
is strong enough, so as to make the Landau Level energy
separation large. Then, there will be only a single Lan-
dau Level that is partially filled. Third, we can make all
the spins line up with the magnetic field if the Zeeman
energy is also large, this is called spin polarization, which
is why we can ignore spin.

Therefore, now we now come to the primary reason one
can use DMRG. Since we are stuck on a single Landau
Level, this is a 1-D system, where the momentum states
in this lowest-filled Landau level (LLL) can be hopped
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to and fro using momentum annihilation and creation
operators. In Figure 1, this corresponds to the L = 1
level. If we work with a finite number of particles and
a finite number of Landau Levels, then we have a finite
basis, which means we can solve a finite matrix in a finite
amount of time. Since this a condensed matter problem,
where ideally we have an infinite number or realistically
have Avogadros number of particles, then we hope that
our finite size solutions scale to this thermodynamic limit.
In real systems, we dont have pure quantum mechan-
ics (zero-temperature), so we expect some Landau Level
mixing or spin flipping depending on energy (Fermi dis-
tribution for electrons), but the ideal theory has done
very well to explain the many experiments.

DENSITY MATRIX RENORMALIZATION
GROUP

Now what is DMRG? It is a way to approximately
solve the many-body system at low energies by: 1. Solv-
ing the system exactly (ED) at a reasonably small size.
2. Taking the new ground state and making a partition
into two blocks to get a reduced density matrix. 3. Sav-
ing only states that have high non-zero entanglement in
the reduced density matrix up to a limit of one’s choos-
ing. 4. Projecting the ground state and operators to this
new smaller basis, which is called truncation. 5. Grow-
ing the system by adding sites. 5. Rinse and repeat.
So technically, it should be labeled RDMRG. Also, this
process just described is called “infinite DMRG” which
allows you to scale to higher particle number (towards
the thermodynamic limit). There is another process of
sweeping called “finite DMRG”, which just refines your
ground state by making block A bigger, while block B
gets smaller, and then reverse. In Figure 2, we see
a sweeping to the right.[7] DMRG helps computation-

FIG. 2: Finite DMRG sweep to the right. Infinite
DMRG would add extra sites in the middle at each step.

ally because we are throwing away basis states, which
means smaller matrices! It is a refinement of the nu-
merical renormalization group (RG) method by Wilson,
which uses space-time or momentum-energy re-scaling to
make the problem simpler i.e. less degrees of freedom.[13]
Depending on how the entanglement spectrum decays
though, we have to keep more states for convergence to
happen. Also, some Hilbert spaces grow faster than oth-

ers. In the FQHE, growing the system means adding
an electron, so in order to maintain the filling fraction
one increases the orbital degeneracy, NL, in the Landau
level. The number of possible states is N choose NL,
where N is the number of electrons. In a spin system the
Hilbert space grows by (2s+1) states per spin or however
many degrees of freedom per site for an O(N) or SU(N)
or Blah(N) system, so its (2s+ 1)N .

Basically more basis states (bigger Hilbert space)
means larger matrices means, so eventually impossible
in your lifetime. However, these bases can be cut down
using the symmetries of the problem. For example, if
we have a conserved quantity like total angular momen-
tum, we can reduce our basis to only those states of the
conserved eigenvalue. This is the idea that density matri-
ces and other operators like the total angular momentum
become block diagonal, where each block acts on a sub-
space of states. Also, testing the limits of DMRG for the
FQHE, we can add Landau level mixing and spin mix-
ing. We just attach the extra Landau Levels of higher
cyclotron energy or opposite spin to the end of the line
to get back to a 1-D system. This makes operations more
complicated and the matrices bigger, but people have
done it.

CONCLUSION

There are also recent developments that touch more
deeply upon why DMRG gives a right answer, specif-
ically, casting the problem in terms of Matrix Prod-
uct States or Operators, which are special forms of the
DMRG wavefunction and Hamiltonian, respectively. A
MPS encodes the state of the system as a chain of ma-
trices, which is traced like so:

|ψ〉 =
∑
{σ}

tr[Aσ1
1 Aσ2

2 ...Aσn
n ]|σ1σ2...σn〉

Each matrix corresponds to a site on the chane, the in-
dex σ represents spin states. If there is translation in-
variance, then all the matrices will end up being the
same. It turns out that DMRG works well if the system
should be well approximated by a MPS. This is easy to
believe for spin chains given how the MPS itself looks
like a chain of transfer matrices. How about for the
FQHE? In fact Zalatel and Mong, found an exact rep-
resentation for the Laughlin state as an MPS.[14] The
Laughlin state is the parent of the Moore-Read or Read-
Rezayi states, which are model wave functions that are
thought to match very well the ground state properties
of the FQHE for specific filling fractions.[12][15][16] The
Laughlin state, which has ν = 1

m , has only abelian any-
onic excitations, while the other states have non-abelian
ones. DMRG has recently been used to study the FQHE
12/5 and 13/5 filling fraction that has so called Fibonacci
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anyons, which according to them is well described by
the Read-Rezayi state.[17][18] They have gotten up to a
system size of 30+ electrons. There TEE is related to
the golden ratio. If one were interested in numerology,
then one might think that maybe this wasn’t an accident
and that perhaps there is some underlying order in the
universe. Thus, while Hilbert space sizes are limited by
computer memory and processing power, there has been
success and it seems that using DMRG for the FQHE is
treading on solid ground.
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