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The equilibration of neutrinos immersed in a thermal matter background is explored from a field-
theoretic perspective. First, a non-equilibrium effective action is formulated by integrating out
the bath degrees of freedom. It is shown that this effective action begets a stochastic Langevin
equation of motion, which is then solved. The treatment presented in this paper was developed by
D. Boyanovsky and C. M. Ho.

I. INTRODUCTION

Neutrinos have acquired a reputation for leaving only
the faintest of traces as they travel, wraithlike, through
the Earth. But for all the difficulty of discerning the ef-
fects of neutrinos in terrestrial settings, they nonetheless
play a critical role in more extreme astrophysical envi-
ronments such as supernovae and the early universe. In
these cases an understanding of how the neutrinos in-
teract with the media through which they propagate is
vital.

The literature on the subject tells a story of increas-
ingly sophisticated treatments. At the most basic level
the richness of neutrino dynamics originates from neu-
trinos’ characteristic mismatch between mass and inter-
action eigenstates, which in turn gives rise to the phe-
nomenon of neutrino oscillation. Another layer of depth
is added when interactions with a matter background
are present, as the evolution of the neutrino system then
becomes dictated by a competition between oscillation
and scattering-induced decoherence. This interplay is de-
scribed quantitatively by the quantum kinetic equations,
which remain a topic of active research [1].

In this paper I will review a derivation due to Boy-
anovsky and Ho [2, 3] of the neutrino quantum kinetics
that prevail in the early universe. The derivation benefits
from certain simplifications: The matter background is
taken to be isotropic and homogeneous, the spin and the
fermionic nature of the neutrinos are neglected, and only
two flavor eigenstates are assumed to exist. What this
calculation does capture, however, is the generic behavior
of a system whose relaxation to equilibrium is informed
by both oscillation and decoherence.

In Section II I will define a model for the neutrino/bath
system and derive a non-equilibrium effective action. I
will then use the effective action in Section III to pro-
duce an equation of motion that can be interpreted as
a stochastic Langevin equation. In Section IV, finally, I
will solve this equation, enabling an explicit computation
of the system’s approach to equilibrium.

II. THE NON-EQUILIBRIUM EFFECTIVE
ACTION

The system we are studying consists of neutrinos with
two flavors (α = e, µ) immersed in a thermal bath of
charged leptons. Two interaction types are present: Neu-
trinos can scatter off of their respective charged lepton
or, with the emission of a W boson, they can scatter into
their respective charged lepton. The Lagrangian that en-
capsulates such a system is

L =
1

2

{
∂µΦT∂µΦ− ΦTM2Φ

}
+ L0[W,χ]

+GWΦTχ+Gφ2
eχ

2
e +Gφ2

µχ
2
µ, (1)

where L0[W,χ] is the free Lagrangian for the matter-
background fields, G is the coupling constant, M2 is the
2×2 neutrino mass matrix with mass-squared entries, W
is the vector-boson field, and Φ and χ are the neutrino
and charged-lepton field doublets, respectively.

Our strategy will be to trace over the bath degrees of
freedom in the partition function in order to obtain a
non-equilibrium effective action, as the latter will enable
us, ultimately, to solve the equation of motion obeyed by
the neutrino fields. The first step is to state the partition
function itself:

Z =

∫
DΦiDΦ′iDΦ±DχDWρΦ,ie

iSJ , (2)

where ρΦ,i is the initial density matrix of the neutrino
fields and Φi and Φ′i give the initial values of Φ±, the
neutrino fields under forward (reverse) time evolution.
SJ is shorthand for the non-equilibrium action in the
presence of sources for the neutrino fields,

SJ =

∫ ∞
t=ti

d4x
{
L0(Φ+) + J+

Φ Φ+ − L0(Φ−)− J+
Φ Φ−

}
+

∫
C
d4x

{
L0 [χ,W ] +GWφαχα +Gφ2

αχ
2
α

}
. (3)

The contour C along which the time integration is per-
formed is shown in Fig. 1. The narrative behind this
form for the path integral is the following: By evolving
the system (with field Φ+) from ti to ∞ and then (with
field Φ−) from ∞ back to ti, we are able to generate the
correlation functions for the neutrino fields while simul-
taneously stipulating that the χ,W fields are in thermal
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equilibrium. The latter is accomplished through the final
leg of the contour C, in which we evolve the bath fields
along a Euclidean path to ti − iβ. Along the Euclidean
path the interaction terms vanish, consistent with the
bath being in thermal equilibrium.

FIG. 1: The contour C from Eq. (3), with χ±, W± set to zero
and J±

a ≡ J±
Φ . Diagram taken from [3].

Tracing over the bath fields in Eq. (2) yields∫
DχDWei

∫
C d

4x{L0[χ,W ]+GWφαχα+Gφ2
αχ

2
α}

=
〈
eiG

∫
C d

4x{Wφαχα+φ2
αχ

2
α}
〉

0
Tre−βH0[χ,W ]. (4)

We have effectively factorized Z into a part that enforces
the thermal equilibrium of the matter background and
a part that describes how the neutrinos, through their
interactions with this background, approach equilibrium
as well. Accordingly, the expectation value in the latter
part is evaluated with respect to the free-field equilibrium
density matrix of the background fields. This expectation

value can be expanded in the coupling constant G to yield
the influence functional

Sif =G

∫
C
d4xφ2

α(x)
〈
χ2
α(x)

〉
0

+

i
G2

2

∫
C
d4x

∫
C
d4x′φα(x)φβ(x′) 〈Oα(x)Oβ(x′)〉0 ,

(5)

where Oα = Wχα. In the expansion we have dropped
the contribution from φ4

α even though it is of order G2;
this term corresponds to neutrino–neutrino interactions
and, although it can give rise to a number of interesting
phenomena, is for our purposes an unnecessary compli-
cation.

Having traced over the bath degrees of freedom and
formulated the influence functional, we can return to the
partition function in Eq. (2) in order to deduce that the
non-equilibrium effective action is

Seff =

∫ ∞
t=ti

d4x
{
L0(Φ+)− L0(Φ−)

}
+ Sif. (6)

We have thus integrated out the bath fields, relegating
their presence to the equilibrium expectation values that
appear in the influence functional.

III. THE STOCHASTIC LANGEVIN EQUATION

The next step in the derivation is to extract an equa-
tion of motion from Z. To this end, it will be convenient
to switch to Wigner coordinates, defined by

Ψ =
1

2

(
Φ+ + Φ−

)
, R = Φ+ − Φ−. (7)

After some manipulation (including a Fourier transform
of the fields) the effective action can be rewritten as

Seff =

∫ ∞
t=ti

dt

∫
d3~k

{
−RT (−~k, t)

[
Ψ̈(~k, t) +

(
k2I + M2 + V

)
Ψ(~k, t)

]}
+ i

∫ ∞
t=ti

dt

∫ ∞
t′=ti

dt′
∫
d3~k

{
1

2
RT (−~k, t)K(~k, t− t′)R(~k, t′) +RT (−~k, t)iΣR(~k, t− t′)Ψ(~k, t′)

}
+

∫
d3xRT0 (~x)Ψ̇0(~x). (8)

Without working through the details of the calculation
leading to this result, one can rationalize the form of
Eq. (8) along the following lines. The square-bracketed

term in the first line represents (loosely speaking) the
evolution of the Ψ fields arising from their kinetic energy,
their mass, and the matter potential V set up by the
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coupling of the neutrino field to 〈χ2〉. The last of these
is akin to the index of refraction of the medium in which
the neutrinos propagate; the diagram that produces it is
shown in Fig. 2.

FIG. 2: Order-G one-loop self-energy corresponding to the
matter potential V = G〈χ2〉. Diagram taken from [2].

The second line of Eq. (8) contains two new objects, K
and iΣR, which are generated by the order-G2 term in the
influence functional from Eq. (5). Defining these objects
here would require a lengthy detour, so I opt instead for
presenting several facts (sans proof) that may allow the
reader to see their conceptual significance without having
to wade through the notational minutiae. It turns out
that K and iΣR obey a fluctuation–dissipation relation
of the form

K̃(~k, k0) = ImΣ̃R(~k, k0) coth

[
βk0

2

]
. (9)

In this equation the tildes indicate that K(~k, t − t′) and

iΣR(~k, t− t′) have been Fourier-transformed. The mean-
ing of Eq. (9) can be brought out by noting that ImΣ̃R is
the neutrino self-energy and its components are given by
the cut discontinuity of the diagram in Fig. 3. K̃, on the
other hand, is related to a stochastic noise source, which
is made evident by observing that the term in Eq. (8)
that contains K can be recast as

exp

{
−1

2

∫
dt

∫
dt′RT (−~k, t)K(~k, t− t′)R(~k, t′)

}
∫
Dξ exp

{
− 1

2

∫
dt

∫
dt′ξT (~k, t)K(~k, t− t′)ξ(−~k, t′)

+ i

∫
dtξ(−~k, t)R(~k, t)

}
. (10)

This equality can be confirmed by completing the square
on the right-hand side and performing the Gaussian in-
tegral. What it reveals is that K permits interpretation
as the two-point correlation function of a noise source ξ
coupled to the field R. Referring back to Eq. (9), it is
apparent that the neutrino self-energy (that is, the dis-

sipation in the system) is related to the fluctuations of
ξ.

FIG. 3: Order-G2 one-loop self-energy, with cut discontinuity
corresponding to ImΣ̃R. Diagram taken from [2].

Substituting Eq. (10) into Eq. (8) allows for a drastic
improvement in the tractability of the partition function.
The power of this technique comes from the fact that
introducing ξ replaces the term in Seff that is quadratic
in R with one that is linear in R. As a consequence,
the path integral in Z over the field R can be explicitly
computed, yielding a delta function whose argument is

Ψ̈(~k, t) +
(
k2I + M2 + V

)
Ψ(~k, t)

+

∫ t

0

dt′Σ(~k, t− t′)Ψ(~k, t′) = ξ(~k, t). (11)

(The Σ appearing here is defined such that ΣR(~k, t−t′) =

Σ(~k, t − t′)Θ(t − t′).) Eq. (11) is a stochastic Langevin
equation of motion satisfied by the field Ψ. It is use-
ful at this point to note (again without proof) that the
equal-time expectation values of Φ with respect to the
initial density matrix of the system are the same as the
equal-time expectation values of Ψ with respect to both
the initial density matrix of the system and the noise dis-
tribution function. This is a long-winded way of saying
that the evolution of the neutrinos themselves is found
by taking the expectation value of the field Ψ that solves
Eq. (11) with given initial conditions.

IV. SOLVING THE EQUATION OF MOTION

The solution to Eq. (11) is most easily obtained after a
Laplace transform, which converts the Langevin equation
into an algebraic matrix equation. The result is

Ψ(~k, t) =Ġ(~k, t)Ψ0(~k) +G(~k, t)Π0(~k)

+

∫ t

0

dt′G(~k, t′)ξ(~k, t− t′), (12)

where G is the anti-Laplace transform of

G̃(~k, s) =
[(
s2 + k2

)
I + M2 + V + Σ̃(~k, s)

]−1

, (13)
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where I am now using tildes to denote Laplace-
transformed functions. When we compute the expecta-
tion value of Ψ, the final term on the right-hand side of
Eq. (12) will vanish because 〈ξ〉 = 0. We can therefore
conclude that G contains all of the physical information
about the evolution of 〈Ψ〉.

Once G is known, Eq. (12) makes finding a solution
trivial. But determining G in the first place is tricky, and
I will omit the details except to say that, in anti-Laplace-
transforming Eq. (13), one must insist that the poles of G̃
are complex: ω1,2(k) = ±Ω1,2(k) + iΓ1,2/2. Allowing the
poles to pick up an imaginary component is tantamount
to assuming that the poles are resonances of the Breit–
Wigner form, which in turn reflects the physical reality
that the neutrino quasi-particles in the medium have a
finite lifetime.

Having made the foregoing remarks, I will now bypass
the (non-trivial) procedure of solving for G and jump di-
rectly to the solution for 〈Ψ〉. Suppose we are interested
in the transition probability Ψe → Ψµ, given a system
in which all of the neutrinos are initially in the electron
flavor state. The result in this case is particularly man-
ageable:∣∣∣〈Ψµ(~k, t)

〉∣∣∣2 =
sin2 2θm

4

[
e−Γ1t + e−Γ2t

− 2e−
1
2 (Γ1+Γ2)t cos (2∆Ωt)

] ∣∣∣Ψ0,e(~k)
∣∣∣2 .

(14)

There are four ~k-dependent parameters governing the

transition probability: the two relaxation rates Γ1,2, the
oscillation frequency in matter 2∆Ω ≡ Ω2 − Ω1, and the
mixing angle in matter θm. As indicated above, the first
three of these correspond to the complex poles of G̃. The
fourth parameter is set by the residues of these poles;
it coincides exactly with the in-medium mixing angle ob-
tained by the more traditional Schrodinger-like treatment
[4].

Eq. (14) highlights the important features that are
uncovered by the field-theoretic derivation developed in
[2, 3]. In the absence of damping (Γ1,2 = 0), we re-
cover the usual formula for neutrino oscillation in matter.
Once damping is introduced, however, a novel behav-
ior emerges: Evidently the equilibration of the neutrinos
with the thermal bath is set by the interplay of the two
distinct time scales associated with Γ1 and Γ2. Funda-
mentally, this finding echoes the fact that there are two
ways for the system to equilibrate — electron-neutrinos
can interact with electrons or muon-neutrinos can inter-
act with muons — and that these two mechanisms are
connected, of course, by oscillation.
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