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In this brief note, it has been shown that scale invariance (i.e the scaling algebra [D,H] = izH)
is incompatible with Hamiltonian (H) being Hermitian on a domain containing the state D|E〉,
where |E〉 is the non-zero energy eigenstate and D generates scale transformation. The claim has
been elucidated with the strongly coupled regime of inverse square potential and the free particle
as concrete examples. The proof presented can be generalised to the statement that any operator
A having a definite scaling dimension, can not be Hermitian on a domain containing D|A〉 where
|A〉 is the eigenstate of operator A. As a corollary, we find that classically scale invariant system
can not be made quantum without loosing either unitarity or scale invariance if we insist on having
bound states with finite binding energy.

INTRODUCTION

Symmetries are holy grail of Physics. Symmetries
are related to conserved quantities in a physical system
due to Noether’s theorem [1], which states that for
every continuous symmetry, there is a conserved charge.
Having a knowledge of conserved charges facilitates the
study of physics of the system in concern. The symmetry
can either be space-time symmetry i.e transformation
on space-time that does not change the physical system
under consideration or be an internal one acting on
internal degrees of freedom associated with the system.
For example, translational invariance is a space-time
symmetry for which momentum is a conserved charge
whereas conservation of quantities like electric charge
are result of some internal symmetry.

In this note, we will focus on scaling symmetry, which
is a space-time symmetry. Specifically, we will be inter-
ested in quantum implementation of scaling invariance
i.e invariance under scaling transformation :

~x→ s~x , t→ szt (0.1)

where z is the dynamical exponent of the system, allow-
ing for systems which are invariant under different scaling
of time and space. In relativistic systems, z = 1 due to
Lorentz invariance. But in absence of Lorentz invariance,
z can have any value. In quantum description of a scale
invariant system, the Hamiltonian H and the generator
of scale transformation D obeys the following commuta-
tion relation:

[D,H] = ızH (0.2)

We will show that (0.2) is incompatible with H being
Hermitian on a domain containing the state D|E〉, where
|E〉 is the non-zero energy eigenstate, henceforth called
S-Theorem. S-Theorem can be used to deduce that
classically scale invariant system can not be made quan-
tum without loosing either unitarity or scale invariance
if we insist on having bound states with finite non-zero

binding energy.

We will elucidate our claim using two well studied
examples, one of which is inverse square potential.This
potential is a subject of study for long time, starting
from [2]. It serves as a platform for simple realisation of
quantum anomaly, where the classical scale symmetry
is broken by quantum mechanical effect leading to
dimensional transmutation i.e the quantum system,
after renormalization, acquires an intrinsic length scale
[3, 4]. Studies have been made on non-self-adjointness
of the Hamiltonian in strongly attractive regime and
how to do the self-adjoint extension of the same, which
essentially amounts to renormalising the problem [5].
The system is also shown to exhibit limit cycle behaviour
in renormalization group flow [6, 7]. Apart from being
a place where sophisticated ideas of Quantum Field
Theory gets realised , this potential appears in different
branches of physics, starting from nuclear physics[7, 8],
molecular physics [9] to quantum cosmology[10], study
of black holes [11]. It deserves mentioning that the
associated Schrodinger equation arises as a scalar wave
equation for a field in Anti-de Sitter space-time. The
second example that we are going to use to elucidate the
idea is free particle.

The paper is organised in following manner. In section-
II, we present the proof of our claim. In section-III, we
review the quantum inverse square problem and we eluci-
date our claim using the same. In section-IV, we discuss
the free particle case. In section-V, we generalise the
theorem for any hermitian operator with definite scaling
dimension. We conclude with a very brief discussion on
the possible implication of the result obtained and its
relation to anomaly in Conformal field theory.

S-THEOREM

To prove the theorem, we consider the eigenstates |E〉
of the Hamiltonian H and take expectation value of the
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[D,H] in these eigenstates. Now we have

〈E|[D,H]|E〉 = 〈E|DH|E〉 − 〈E|HD|E〉 (0.3)

Assuming H is hermitian on a domain, which contains
the state D|E〉, we have

〈E|DH|E〉 = E〈E|D|E〉 (0.4)

〈E|HD|E〉 = E〈E|D|E〉 (0.5)

Hence, using (0.4) and (0.5), (0.3) yields:

〈E|[D,H]|E〉 = 0 (0.6)

It deserves mentioning that hermiticity of H is crucial
in obtaining 0. Furthermore, we assumed H is hermitian
on a domain that has D|E〉 states. We will elucidate
how this assumptions are going to play a crucial role in
subsequent sections. On the other hand, scale invariance
implies

[D,H] = ızH, (0.7)

so that we have

〈E|[D,H]|E〉 = ız〈E|H|E〉 6= 0 (0.8)

Comparing (0.6) and (0.8), we arrive at the incom-
patibility theorem. Note, the mismatch vanishes for
E = 0 eigenstates. Hence, to apply the S-theorem, the
existence of non-zero energy eigenstate is needed.

It deserves mentioning that the mismatch is not due
to the real part of the quantity 〈E| [D,H] |E〉 since,

Re〈E| [D,H] |E〉 = 0 (0.9)

is consistent with what we get using the algebra [D,H] =
ızH i.e

Re〈E| [D,H] |E〉 = Re〈E|ızH|E〉 = 0 (0.10)

The mismatch between (0.6) and (0.8) lies in the imag-
inary part, which hints at the fact H can not be hermi-
tian if we have scale invariance. We recall that hermitic-
ity of H crucially depends on vanishing of a boundary
term, which is imaginary when we consider quantities
like 〈E|H|E〉.

ILLUSTRATION I: INVERSE SQUARE
POTENTIAL

The aim of this section is to illustrate S-theorem with
bound states. One of the examples where classically scale
invariance is realised in a system is a particle moving in a
inverse square potential. We consider a particle of mass

m moving in a inverse square potential. The action for
the particle is given by

S =

∫
dt

[
1

2
mṙ′

2 − λ′

r′2

]
. (0.11)

where λ′ is the coupling and r > 0 is the position of the
particle.

We can redefine r′ →
√
mr′ = r and introduce a di-

mensionless coupling λ = mλ′ so that the action becomes

S =

∫
dt

1

2

[
ṙ2 − 2λ

r2

]
(0.12)

The action (0.12) is indeed invariant under scale trans-
formation, which acts on r in following manner:

r(t)→ s−
1
2 r(st). (0.13)

The Noether charge corresponding to this continuous
scale symmetry is given by

D =
rp

2
+
pr

2
− tH (0.14)

and scale invariance implies that D is conserved charge
i.e dD

dt = 0.

Here we will briefly review the solution to the
Schrodinger equation for inverse square potential [5]. The
wave-function ψ obeys

− d2ψ

dr2
+

2λ

r2
ψ = Eψ (0.15)

For the regime 2λ > − 1
4 , the Hamiltonian is bounded

below since we can rewrite H = B†B where B = − d
dr + ν

r
and 2λ = ν2 − ν, hence the energy eigenvalues are non-
negative.

For the strongly attractive regime i.e 2λ < − 1
4 , Hamil-

tonian is unbounded, we do have normalizable solution
to (0.15) with negative E. The energy eigenstate with
E = −κ2 is given by

ψ = κ

√
2 sinh (πg)

πg

√
rKıg (κr) (0.16)

Just like what we did in the last section, we take en-
ergy eigenstates and calculate the expectation value of
[D,H] in those states. For strongly coupled regime, the
inverse square potential admits bound states i.e states
with negative energy (−εB). Once again, there is a mis-
match between calculation of this expectation value in
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two different ways. First,

〈E|[D,H]|E〉 = 〈E|DH|E〉 − 〈E|HD|E〉
= E〈E|D|E〉 − E〈E|D|E〉 = 0(0.17)

and secondly, we use the following commutator

[D,H] = 2ıH (0.18)

to arrive at

〈E|[D,H]|E〉 = 2ı〈E|H|E〉 = −2ıεB 6= 0 (0.19)

Naively, (0.17) and (0.19) seems to be incompatible.
The resolution to this apparent contradiction illustrates
the S-theorem.The fact that, in this regime, where we
do have negative energy bound states, the Hamiltonian
is no more a Hermitian operator , comes as a saviour
and resolve the inconsistency in following way: in the
second step of (0.17) when H is acting on bra 〈E|, we
are implicitly assuming H is hermitian, which is not the
case, hence (0.17) breaks down.

The following paragraph explains why and how H
looses Hermiticity for strongly attractive regime i.e for
2λ < − 1

4 .

To make sure, H ⊃ p2 is a Hermitian operator, we
must ensure the following term vanishes:[

ψ∗
dψ

dr
− ψdψ

∗

dr

]
r=0

= 0 (0.20)

This ensures 〈ψ|(H|ψ〉) = (〈ψ|H)|ψ〉. Physically this
means that probability does not leak through the ori-
gin and the model is unitary. Now, any solution near
r = 0 behaves as

ψ ∼ r∆+ +Aeıθr∆− (0.21)

where ∆± are roots of ∆2 −∆− 2λ = 0.

ψ ∼ r 1
2 +ıν +Aeıθr

1
2−ıν (0.22)

where ν =
√
−
(
2λ+ 1

4

)
. Now it is easy to check, we

can not enforce (0.20), if the solution is given by (0.22).
It deserves mentioning that θ is not arbitrary, it can be
obtained by doing a small r approximation of (0.16).

Similarly, to ensure

〈φ|(H|ψ〉) = (〈φ|H)|ψ〉, (0.23)

we need [
φ∗
dψ

dr
− ψdφ

∗

dr

]
r=0

= 0. (0.24)

It can be shown for φ = 〈r|E〉 and ψ = 〈r|D|E〉, (0.24)
is not satisfied and if we consider the non-zero value

of
[
φ∗ dψdr − ψ

dφ∗

dr

]
r=0

, we will see there is no mismatch

between (0.17) and (0.19), since, (0.17) gets modified in
that case so that H looses hermiticity.

In order to make H a Hermitian operator, we need
to regularise and renormalise the problem which essen-
tially introduces a scale and breaks the scale invariance.
There is a plethora of literature on this regularisation and
renormalization procedure in context of inverse square
problem as mentioned in the introduction.

For the inverse square problem, the time translation
generator H, the scale transformation generator D′ = D

2

and special conformal generator K = −2tD′ + t2H − r2

2
forms a close lie algebra known as SO(2, 1) in following
manner

[D′, H] = ıH

[K,H] = −2ıD′

[D′,K] = −ıK

This algebra is the 0 + 1 dimensional version of confor-
mal algebra, a symmetry algebra admitted by Conformal
Field Theory (CFT) in d+1 dimension. This essentially
means the Hamiltonian has a scaling dimension of 2. (In
this convention, length has a scaling dimension of 1). In
general, we could have a classically scale invariant system
such that H has a scaling dimension z.

ILLUSTRATION II: FREE PARTICLE

In this section, we will illustrate S-theorem with
scattering states. In principle, we can do this inverse
square problem. But for simplicity, we take free particle

(H = p2

2 ), which also elucidates the scenario.

The fact that the scattering states |p〉 (〈x|p〉 = eıpx)
are dirac-delta normalized and hence, we have infinity all
over our expressions (0.17) and (0.8) presents technical
problem in showing there is a mismatch. To cure that,
we put the theory on a circle with length L and at the
end of the day, we take the decompactification limit i.e
L→∞.

Since, we have scale invariance, S-theorem forbids H to
be hermitian in this case. It motivates us to look carefully
at the derivation of (0.6) and (0.17) in this context to
check whether H is hermitian. In fact, it is not. It can
be shown that although

〈p| (HD|p〉)− (〈p|DH) |p〉 = 2ıp2L (0.25)
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is consistent with scaling algebra

[D,H] = 2ıH (0.26)

yet the cost of this consistency is that H is not
hermitian on a domain which contains the state D|p〉
as evident from (0.25). Once again, the elegance of
S-theorem is apparent. Now, we can decompatification
limit, 2ıp2L becomes 2ıp2δ(0), and we loose hermiticity
of H in a same manner for the free particle on a line.

Given this scenario, we ask ourselves why we don’t
need to renormalise the problem to restore hermiticity of
H. The answer is that we simply don’t care; in case of a
theory on a circle, the state D|p〉 does not belong to the
Hilbert space since, 〈x|D|p〉 is not a periodic function
living on a circle. Hence, it does not really matter if
H looses hermiticity while acting on this kind of states.
In the decompatification limit, this state does not enter
the Hilbert space as well, since in L → ∞, this state
is not even dirac-delta normalized. Once again, it does
not matter if H looses hermiticity on this space. As a
comparison to inverse square problem, we note, there the
state D|E〉 is properly normalized and we don’t have the
liberty of take this state out of Hilbert space, hence is
the need of reguralisation and renormalization and hence
breaking of scale symmetry in quantum level. But here
we have the liberty to take the state D|p〉 out of the
Hibert space so that S-theorem is not applicable and we
are good.

GENERALISATION AND COROLLARY

S-theorem can be generalised to to any Hermitian
operator A with non zero scaling dimension α i.e
[D,A] = ıαA. Basically, H is replaced by the operator
A, and the statement gets rephrased as A can not be
Hermitian on a domain containing D|A〉 where |A〉 is
the eigenstate of operator A. In particular, if we want A
to hermitian on a Hilbert space, L2 space, then the state
D|A〉 can not belong to the L2 space. For example, A
can be the momentum operator p, which is hermitian
on rigged Hilbert space and has a non-zero scaling
dimension. Generalised S-theorem implies that D|p〉 can
not belong to rigged Hilbert space, which is indeed the
case.

A corollary of S-theorem is that we can not have bound
states (i.e properly normalized) with non-zero energy
in a scale invariant system if we want our Hamiltonian
to be hermitian on Hilbert space. The proof goes in
following way: If there exists a properly normalized state
|E〉, then we expect D|E〉 to be a properly normalized
state (which should be the case, since wavefunction dies
out at infinity). In that case, we have a scale invariant

system, whose Hamiltonian H is Hermitian on a domain
which contains D|E〉 states Since, S-theorem forbids
such situation, the only way it can happen is εB = 0,
for which, S-theorem is not applicable. Hence, bound
state has to occur at E = 0 otherwise H becomes
non-hermitian and the model becomes non-unitary,
(for inverse square problem, this manifests itself as
probability leaking through r = 0) if we retain the scale
invariance. This result is in fact consistent with the
representation theory: a discrete spectrum {En} can not
form a representation of a transformation which acts
by E → λzE for continuous λ., implying that the only
allowed values would be E = 0,−∞, otherwise we have
a continuous spectra and the system does not admit
a ground state, in fact, we have shown for the inverse
square problem that continuous spectrum is an illusion
since in that case H is no more Hermitian.

CONCLUSION

In Conformal field theory trace anomaly indicates the
breaking on scale invariance on quantum level i.e even
at a fixed point trace of stress-energy tensor is non-zero.
Now quantum mechanics can be thought of 0 + 1d field
theory where Tµµ = T 0

0 = H, hence, In QM, expectation
of H being non-zero can be thought of a signature of
scale anomaly.

The theorem presented in this brief note does not
really depend on number of dimension of the underlying
theory. It is based on having a scaling algebra. There-
fore, S-theorem holds even for field theories living in
d + 1 dimension. It deserves mentioning that CFT in
d+ 1 ≥ 2 involves radial quantization, where D becomes
the generator of evolution operator. In that scenario,
the scale invariance is maintained at the cost of loosing
hermiticity of H, which does not play a significant role,
since we are not doing time slice quantization. In time
slice quantization, eıHt is the evolution operator and we
want it to be unitary and hence H should be hermitian.
But in radial quantization eıHt is not an evolution
operator, hence, it is fine if H looses hermiticity.

To summarise, S-theorem is basically an incompatibil-
ity statement. Given a classically scale invariant physical
system having non-zero energy eigenstates, we can

• break the scale invariance (e.g Inverse square strong
coupling regime ) or

• take the state D|E〉 out of Hilbert space (e.g free
particle) or

• not worry about H being hermitian (for example
CFT in d+ 1 ≥ 2)



5

What we want to do is dictated upon which kind
of physics we are looking at and varies case to case.
Moreover, the line of argument, presented here can
be used to probe the normalizability of eigenstates of
Hermitian operators with some scaling dimension and
learn about the matrix elements of D between those
eigenstates.

Last but not the least, S-theorem also explains why
the quantum version of the virial theorem does not
hold for inverse square potential. Classically, the virial
theorem is valid for particles whose orbit is bounded
in phase space, and it is a trivial task to show, that
classically if there is bounded orbit, that has to be of 0
energy (since for a rn potential 2〈T 〉 = n〈V 〉, where T
and V are kinetic and potential energy of the system)
and this is possible only if the spatial dimension is more
than 1 and we can arrange for a situation where the
angular momentum term cancel the original potential to
make the effective potential vanish. This cancellation
can occur only for inverse square potential since, the
term due to angular momentum in effective potential
is repulsive inverse square. But quantum mechanically,
virial theorem seems to fail, since we do have bound
states with finite non-zero binding energy for strongly
attractive regime. The resolution to this apparent
contradiction comes from noting that virial theorem
does not apply to this case since it requires (0.17) to
be valid, which is not the case as H is not Hermitian
in strongly attractive regime. On the other hand, if we
make H hermitian, we need to renormalise the problem
and break the scale invariance, as a result, the potential
is no more a homogeneous function of r, hence the virial
theorem is not applicable.
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