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1. Entanglement entropy in a quantum not-so-many-body system. [from

Tarun Grover]

Consider a system consisting of two electrons, each with spin one-half, and each of

which can occupy either of two sites labelled i = 1, 2. The dynamics is governed

by the following (Hubbard) Hamiltonian:

H = −t
∑
σ=↑,↓

(
c†1σc2σ + c†2σc1σ

)
+ U

∑
i

ni↑ni↓.

σ =↑, ↓ labels the electron spin. c and c† are fermion creation and annihilation

operators,

{ciσ, c
†
i′σ′} = δii′δσσ′

and niσ ≡ c†iσciσ is the number operator. The condition that there is a total of

two electrons means we only consider states |ψ〉 with(∑
i,σ

niσ − 2

)
|ψ〉 = 0.

The first term is a kinetic energy which allows the electrons to hop between the

two sites. The second term is a potential energy which penalizes the states where

two electrons sit at the same site, by an energy U > 0.

(a) Enumerate a basis of two-electron states (make sure they satisfy the Pauli

exclusion principle).

(b) The Hamiltonian above has some symmetries. In particular, the total elec-

tron spin in the ẑ direction is conserved. For simplicity, let’s focus on the

states where it is zero, such as c†1↑c
†
2↓ |0〉 where |0〉 is the state with no

electrons, ciσ |0〉 = 0. Find a basis for this subspace, {φa}, a = 1..N .

(c) Find the matrix elements of the Hamiltonian in this basis,

hij ≡ 〈φa|H|φb〉 , a, b = 1..N.
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(d) Find the eigenstate and eigenvalue of the matrix h with the lowest eigen-

value. Write the groundstate as

|Ψ〉 =
N∑
a=1

αa |φa〉 .

(e) Before imposing the global constraints on particle number and Sz, the

Hilbert space can be factored (up to some signs because fermions are weird)

by site: H = H1 ⊗H2, where Hi = span{|0〉 , c†i↑ |0〉 , c
†
i↓ |0〉 , c

†
i↑c
†
i↓ |0〉}. Us-

ing this bipartition, construct the reduced density matrix for the first site

in the groundstate:

ρ1 ≡ trH2 |Ψ〉 〈Ψ| .

(f) Find the eigenvalues λα of ρ1. Calculate the von Neumann entropy of ρ1,

S(ρ1) = −
∑

α λα log λα as a function of U/t. What is the numerical value

when U/t→∞?

(g) Super-Exchange. Go back to the beginning and consider the limit U � t.

What are the groundstates when U/t → ∞, so that we may completely

ignore the hopping term?

At second order in degenerate perturbation theory, find the effective Hamil-

tonian which splits the degeneracy for small but nonzero t/U . Write the

answer in terms of the spin operator

~Si ≡ c†iσ~σσσ′ciσ′ .

The sign is important!

(h) Redo all the previous parts for the case where the two particles are spin-half

bosons,

ciσ  biσ, [biσ,b
†
i′σ′ ] = δii′δσσ′ .

2. Chain rules.

Show that for a joint distribution of n random variables p(X1 · · ·Xn), the joint

and conditional entropies satisfy the following chain rule:

H(X1 · · ·Xn) =
n∑
i=1

H(Xi|Xi−1 · · ·X1).

Show that the n = 2 case is the expectation of the log of the BHS of Bayes rule.

Then repeatedly apply the n = 2 case to increasing values of n.
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3. Learning decreases ignorance only on average.

Consider the joint distribution pyx =

(
0 a

b b

)
yx

, where y =↑, ↓ is the row index and

x =↑, ↓ is the column index (so yx are like the indices on a matrix). Normalization

implies
∑

xy pxy = a+2b = 1, so we have a one-parameter family of distributions,

labelled by b.

What is the allowed range of b?

Find the marginals for x and y. Find the conditional probabilities p(x|y) and

p(y|x).

Check that H(X|Y ) ≤ H(X) and H(Y |X) ≤ H(Y ) for any choice of b.

Show, however, that H(X|Y =↓) > H(X) for any b < 1
2
.
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