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1. Direct application of Lieb’s theorem.

We only used a very special case of Lieb’s theorem to prove monotonicity of the

relative entropy. Surely there is more to learn from it.

Consider an ensemble of states ρ =
∑

i piρi, and a unitary operator U (for

example, it may be closed-system time evolution).

Show that the relative entropy between ρ(t) ≡ UρU† and ρ is convex in ρ:

D(ρ(t)||ρ) ≤
∑
i

piD(ρi(t)||ρi).

Open ended bonus problem: see if you can find a better result by directly applying

Lieb’s joint concavity theorem to a problem in many body physics.

2. Majorization questions.

(a) Show that if a doubly stochastic map is reversible (invertible and the inverse

is also doubly stochastic) then it is a permutation.

(b) Show that the set of doubly stochastic maps is convex. (This is the easier

direction of the Birkhoff theorem.)

(c) Show that a pure state and uniform state satisfy (1, 0, 0 · · · ) � p � (1/L, 1/L · · · )
for any p on an L-item space.

(d) A useful visualization of majorization relations is called the ‘Lorenz curve’:

this is just a plot of the cumulative probability Pp(K) =
∑K

k=1 pk as a

function of K. What does p � q mean for the Lorenz curves of p and q?

Draw the Lorenz curves for the uniform distribution and for a pure state.

(e) Show that the set of probability vectors majorized by a fixed vector x is

convex. That is: if x � y and x � z then x � ty+ (1− t)z, t ∈ [0, 1]. Hints:

(1) the analogous relation is true if we replace x, y, z with real numbers and

� with ≥. (2) Show that Pp↓(K) ≥ Pπp↓(K) (where πp↓ indicates any other

ordering of the distribution).

1



(f) For the case of a 3-item sample space we can draw some useful pictures

of the whole space of distributions. The space of probability distributions

on three elements is the triangle x1 + x2 + x3 = 1, xi ≥ 0, which can be

drawn in the plane. We can simplify the picture further by ordering the

elements x1 ≥ x2 ≥ x3, since majorization does not care about the order.

Pick some distribution x with x1 6= x2 6= x3 and draw the set of distributions

which x majorizes, the set of distributions majorized by x, and the set of

distributions with which x does not participate in a majorization relation

(‘not comparable to x’).

3. Majorization and catalytic majorization fractions. [open-ended]

How often do two randomly-chosen probability distributions participate in a ma-

jorization relation? Assume for simplicity that they are distributions on the same

sample space, with L elements, and think about the fraction of p and q which

satisfy p � q or q � p as a function of L.

When they fail to majorize each other, how often is it possible to find a catalyst?

4. Compute the trace distance between the two single-qbit states

ρv =
1

2
(1 + ~v · σ) and ρw =

1

2
(1 + ~w · σ) .

5. Random singlets.

[from PRL 111, 170501 (2013)]

Consider qbits arranged on a chain. Suppose that the groundstate is made of

random singlets, where the probability for spins at i and j to be paired is f(|i−j|a)

(a is the lattice spacing). Consider in turn the case of short-range singlets f(x) ∝
e−x/ξ, and long-range singlets f(x) ∝ 1

x2+δ2
.

Consider a A which is an interval
[
−R−ε

2
, R−ε

2

]
(ε� R) and B is what we called

Ā− (nearly the complement), more precisely: B ≡ [−∞, R
2

]∪ [R
2
,∞]. Let Iε(R) ≡

I(A : B) = S(A) + S(B)− S(AB) be their mutual information.

Find
〈
~Si · ~Sj

〉
and Iε(R). In both cases assume the regions are big enough that

you can average over regions and use a continuum approximation (ξ, δ � lattice

spacing).

Check that the answer is consistent with the mutual information bound on cor-

relations.
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6. Checking the operational interpretation of trace distance. [optional

bonus problem, thanks to S.M.Kravec for input]

(a) Warmup. Show that for two pure states |1〉 , |2〉, their trace distance T and

their fidelity F satisfy

F 2 + T 2 = 1.

(b) In lecture the possibility was raised that by considering POVMs which are

not projective measurements it might be possible to evade the theorem we

proved on the probability of success at distinguishing two states by a single

measurement in terms of the trace distance.

Consider two non-orthogonal pure states |1〉 , |2〉. with overlap δ = | 〈1|2〉 |2
and consider the POVM made of :

E1 = χ |1〉 〈1| , E2 = α |2〉 〈2| , E3 = 1− E1 − E2.

For which χ, α is this a POVM?

Find the probability of success of the strategy: if outcome is 1 guess 1, if

outcome is 2 guess 2, if outcome is 3 do a little dance then guess randomly.

Show that the bound we proved is not violated.

(c) Nevertheless, POVMs (which are not projective measurements) are indeed

useful for state discrimination. Find a POVM with the property that distin-

guishes between two non-orthogonal pure states |1, 2〉 in such a way that for

one outcome we are certain that the state is |1〉 and for another we are cer-

tain that the state is |2〉. (There is a third outcome where we learn nothing

from the measurement.)
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