University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215C QFT Spring 2017 Assignment 1

Due 12:30pm Wednesday, April 12, 2017

1. Brain-warmer.

Show that, for two variables K, X,

if
$$e^{-2K} = \tanh X$$
 then $e^{-2X} = \tanh K$ (1)

(*i.e.* this relation between K and X is 'self-dual'). Show that the relation (1) can be made more manifestly symmetric under interchange of X and K by writing it as

 $1 = \sinh 2X \sinh 2K \; .$

(This is the combination that appears in the Kramers-Wannier self-duality condition on the square lattice Ising model coupling.)

2. Trotterization practice.

Here's an exercise in understanding the quantum-to-classical correspondence.

Suppose we add a term

$$\Delta \mathbf{H}_1 = -v_x \sum_j \mathbf{X}_j \mathbf{X}_{j+1}$$

to the hamiltonian of the transverse-field Ising model.

- (a) Does this term preserve the \mathbb{Z}_2 symmetry generated by $\mathbf{S} = \prod_i \mathbf{X}_i$?
- (b) Construct a corresponding statistical mechanics model. That is, find C and S so that

$$\sum_{C} e^{-S} = \mathrm{tr}_{\mathcal{H}} e^{-\frac{1}{T} (\mathbf{H}_{\mathrm{TFIM}} + \Delta \mathbf{H}_{1})}$$

Are the resulting Boltzmann weights e^{-S} positive?

(c) Answer the previous two questions for

$$\Delta \mathbf{H}_2 = -v_y \sum_j \mathbf{Y}_j \mathbf{Y}_{j+1} \; .$$

(d) Answer the previous two questions for

$$\Delta \mathbf{H}_3 = -g_y \sum_j \mathbf{Y}_j \quad .$$

3. Ising gauge theory.

Show that the statistical mechanics model associated (by the quantum-classical correspondence) with the toric code Hamiltonian (on the last homework of 215B) is Wilson lattice gauge theory with gauge group \mathbb{Z}_2 .

4. Warmup for the next problem.

Parametrize the general pure state of a qbit in terms of two real angles. (For example: find the eigenstates of

$$\boldsymbol{\sigma}^n \equiv \check{n} \cdot \vec{\boldsymbol{\sigma}} \equiv n_x \mathbf{X} + n_y \mathbf{Y} + n_z \mathbf{Z}$$

where \check{n} is a unit vector.)

Compute the expectation values of \mathbf{X} and \mathbf{Z} in this state.

5. Mean field theory is product states.

Consider a spin system on a lattice. More specifically, consider the transverse field Ising model:

$$\mathbf{H} = -J\left(\sum_{\langle x,y\rangle} Z_x Z_y + g \sum_x X_x\right).$$

Consider the mean field state:

$$|\psi_{\rm MF}\rangle = \otimes_x \left(\sum_{s_x \pm} \psi_{s_x} |s_x\rangle\right). \tag{2}$$

Restrict to the case where the state of each spin is the same.

Write the variational energy for the mean field state.

Assuming s_x is independent of x, minimize it for each value of the dimensionless parameter g. Find the groundstate magnetization $\langle \psi | Z_x | \psi \rangle$ in this approximation, as a function of g.