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1. Topology brain warmer.

Compute the de Rham cohomology of the d-torus. Hint: you can choose p-chains

of the form

Ai1···ip(x)dxi1 ∧ · · · ∧ dxip

where xi ' xi + 1 are periodically identified coordinates, and Ai1···ip is a single-

valued (i.e. periodic) function. Notice that xi is not a single-valued function.

2. Coherent state quantization brain-warmers.

(a) Start with first order action S =
∫

dt z†αżα. Show that the Hamiltonian is

H = 0.

(b) Check the completeness relation in the spin 1/2 coherent state basis.

(c) Show that different spinor representations, i.e. different choices of ψ in

z =

(
ei(ψ+ϕ/2) cos θ/2

ei(ψ−ϕ/2) sin θ/2

)
shift the coefficient of the total derivative ϕ̇ part of the WZW functional.

3. Topological terms in QM. [from Abanov]

The euclidean path integral for a particle on a ring with magnetic flux θ =
∫
~B ·d~a

through the ring is given by

Z =

∫
[Dφ]e−

∫ β
0 dτ(m2 φ̇2−i

θ
2π
φ̇) .

Here

φ ≡ φ+ 2π (1)

is a coordinate on the ring. Because of the identification (1), φ need not be a

single-valued function of τ – it can wind around the ring. On the other hand, φ̇

is single-valued and periodic and hence has an ordinary Fourier decomposition.

This means that we can expand the field as

φ(τ) =
2π

β
Qτ +

∑
`∈Z

φ`e
i 2π
β
`τ . (2)
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(a) Show that the φ̇ term in the action does not affect the classical equations of

motion. In this sense, it is a topological term.

(b) Using the decomposition (2), write the partition function as a sum over

topological sectors labelled by the winding number Q ∈ Z and calculate it

explicitly.

[Hint: use the Poisson resummation formula∑
n∈Z

e−
1
2
tn2+izn =

√
2π

t

∑
`∈Z

e−
1
2t
(z−2π`)2 . ]

(c) Use the result from the previous part to determine the energy spectrum as

a function of θ.

(d) [more optional] Derive the canonical momentum and Hamiltonian from the

action above and verify the spectrum.

(e) Consider what happens in the limit m → 0, θ → π with X ≡ θ−π
m
∼ β−1

fixed. Interpret the result as the partition function for a spin 1/2 particle.

What is the meaning of the ratio X in this interpretation?

An important lesson here is that total derivative terms in the action do affect the

physics.

4. Geometric Quantization of the 2-torus.

Redo the analysis that we did in lecture for the two-sphere for the case of the

two-torus, S1 × S1. The coordinates on the torus are (x, y) ' (x + 2π, y + 2π);

use Ndx ∧ dy as the symplectic form. Show that the resulting Hilbert space

represents the Heisenberg algebra

eixeiy = eiyeixe
2πi
N .

(I am using boldface letters for operators.) The irreducible representation of this

algebra is the same Hilbert space as a particle on a periodic one-dimensional

lattice with N sites.

5. Particle on a sphere with a monopole inside.

Consider a particle of mass m and electric charge e with action

S[~x] =

∫
dt

(
1

2
m~̇x2 + e~̇x · ~A(~x)

)
constrained to move on a two sphere of radius r in three-space, ~x2 = r2. Suppose

further that there is a magnetic monopole inside this sphere: this means that

4πg =
∫
S2
~B · d~a =

∫
S2 F , where F = dA. (Since the particle lives only at

~x2 = r2, the form of the field in the core of the monopole is not relevant here.)
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(a) Find an expression for A = Aidx
i = Aθdθ + Aϕdϕ such that F = dA has

flux 4πg through the sphere.

(b) Show that the Witten argument gives the Dirac quantization condition 2eg ∈
Z.

(c) Take the limitm→ 0. Count the states in the lowest Landau level. Compare

with the calculation in lecture for coherent state quantization of a spin-s.
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