1. **Brain-warmer.** Find the coefficient N_s in the coherent state representation of the spin operator for general spin s

$$S^a = N_s \int dn \mid \hat{n} \rangle \langle \hat{n} \mid .$$

2. **Topological charge.** How does the theta term appear in the \mathbb{CP}^1 representation of the NLSM on S^2? Show that

$$\epsilon_{abc} n^a dn^b \wedge dn^c = \alpha dA$$

for some constant α, and find α.

3. **Large n.** Consider the NLSM on S^{n+1} in terms of the \hat{n} variables, in D space-time dimensions. Impose the constraint $\hat{n} \cdot \hat{n} = 1$ by Lagrange multiplier, $\int [d\sigma] e^{if \sigma(n^2 - 1)}$, so that the integral over n is Gaussian. Do the gaussian integral and find an effective action for σ. Find the saddle point equation for σ. Find a translation-invariant saddle point. Compare and contrast the saddle point condition for $D = 2$ and $D > 2$. For $D > 2$ you should find a critical value of the coupling.

Compare the behavior near the critical point with the large-n limit of the Wilson-Fisher fixed point in the ϵ expansion.

Evaluate the two point function $\langle n^a(x)n^a(0) \rangle$ at the saddle point.

4. **Reminder.** If you didn’t do the problem on the Haldane phase on the previous problem set, try it now.

5. **Fermionic coherent state exercise.**

Consider a collection of fermionic modes c_i with quadratic hamiltonian $H = \sum_{ij} h_{ij} c_i^\dagger c_j$, with $h = h^\dagger$.

(a) Compute $\text{tr} e^{-\beta H}$ by changing basis to the eigenstates of h_{ij} (the single-particle hamiltonian) and performing the trace in that basis: $\text{tr}... = \prod \epsilon \sum_{n_x = 0,1}^c c_i^\dagger c_x = 0,1 ...$

(b) Compute $\text{tr} e^{-\beta H}$ by coherent state path integral. Compare!

(c) [super bonus problem] Consider the case where h_{ij} is a random matrix. What can you say about the thermodynamics?