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1. More about 0+0d field theory.

Here we will study a bit more some field theories with no dimensions at all, that

is, integrals.

Consider the case where we put a label on the field: q → qa, a = 1..N . So we are

studying

Z =

∫ ∫ ∞
−∞

∏
a

dqa e
−S(q).

Let

S(q) =
1

2
qaKabqb + Tabcdqaqbqcqd

where Tabcd is a collection of couplings.

(a) Show that the propagator has the form:

a−−−−−−b =
(
K−1

)
ab

=
∑
k

φa(k)?
1

k
φb(k)

where {k} are the eigenvalues of the matrix K and φa(k) are the eigenvectors

in the a-basis.

(b) Show that in a diagram with a loop, we must sum over the eigenvalue label

k. (For definiteness, consider the order-g correction to the propagator.)

(c) Consider the case where Kab = t (δa,b+1 + δa+1,b), with periodic boundary

conditions: a+N ≡ a. Find the eigenvalues. Show that in this case if

Tabcdqaqbqcqd =
∑
a

gq4
a

the k-label is conserved at vertices, i.e. the vertex is accompanied by a delta

function on the sum of the incoming eigenvalues.

(d) (Bonus question) What is the more general condition on Tabcd in order that

the k-label is conserved at vertices?

(e) (Bonus question) Study the physics of the model described in 1c.
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Back to the case without labels.

(f) By a change of integration variable show that

Z =

∫ ∞
−∞

dq e−S(q)

with S(q) = 1
2
m2q2 + gq4 is of the form

Z =
1√
m2
Z
( g

m4

)
.

This means you can make your life easier by setting m = 1, without loss of

generality.

(g) Convince yourself (e.g. with Mathematica) that the integral really is ex-

pressible as a Bessel function.

(h) It would be nice to find a better understanding for why the partition function

of (0+0)-dimensional φ4 theory is a Bessel function. Then find a Schwinger-

Dyson equation for this system which has the form of Bessel’s equation for

K(y) ≡ 1
√
y
e−a/yZ (1/y)

for some constant a. (Hint: I found it more convenient to set g = 1 for this

part and use ξ ≡ m2 as the argument. If you get stuck I can tell you what

function to choose for the ‘anything’ in the S-D equation.)

(i) Make a plot of the perturbative approximations to the ‘Green function’

G ≡ 〈q2〉 as a function of g, truncated at orders 1 through 6. Plot them

against the exact answer.

(j) (Bonus problem) Show that cn+1 ∼ −2
3
ncn at large n (by brute force or by

cleverness).

2. Combinatorics from 0-dimensional QFT.

This problem may not be fully de-bugged yet. Let me know if you run into

trouble.

Catalan numbers Cn = (2n)!
n!(n+1)!

arise as the answer to many combinatorics prob-

lems (beware: there is some disagreement about whether this is Cn or Cn+1).

One such problem is: count random walks on a 1d chain

with 2n steps which start at 0 and end at 0 without

crossing 0 in between.
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Another such problem is: in how many ways can 2n (dis-

tinguishable) points on a circle be connected by chords

which do not intersect within the circle.

Consider a zero-dimensional QFT with the following Feynman rules:

• There are two fields h and l.

• There is an
√
th2l vertex in terms of a coupling t.

• The bare l propagator is 1.

• The bare h propagator is 1.

• All diagrams can be drawn on a piece of paper without crossing.1

• There are no loops of h.

The last two rules can be realized from a lagrangian by introducing a large N

(below).

(a) Show that the full green’s function h is

G(t) =
∑
n

tnCn

the generating function of Catalan numbers.

(b) Argue by diagrams for the Schwinger-Dyson equation

where Σ is the 1PI self-energy of h.

(c) Solve this equation for the generating function G(t).

(d) For what combinatorics problem is the full h green’s function G(t) = 1
1−Σ(t)

the generating function?

1An annoying extra rule: All the l propagators must be on one side of the h propagators. You’ll

see in part 2f how to justify this.
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(e) If you are feeling ambitious, add another coupling N−1 which counts the

crossings of the l propagators. The resulting numbers can be called Touchard-

Riordan numbers.

(f) How to realize the no-crossings rule? Consider

L =

√
t√
N
lαβhαhβ +

∑
α,β

l2αβ +
∑
α

h2
α

where α, β = 1 · · ·N . By counting index loops, show that the dominant

diagrams at large N are the ones we kept above. Hint: to keep track of the

index loops, introduce (’t Hooft’s) double-line notation: since l is a matrix,

it’s propagator looks like:
α−−−−−−− α
β −−−−−−− β, while the h propagator is just

one index line α α, and the vertex is !! . If you don’t like my ascii

diagrams, here are the respective pictures: 〈lαβlαβ〉 = ,

〈hαhα〉 = and the hhl vertex is: .

(g) Use properties of Catalan numbers to estimate the size of non-perturbative

effects in this field theory.

(h) There are many other examples like this. Another similar one is the rela-

tionship between symmetric functions and homogeneous products. A more

different one is the enumeration of planar graphs. For that, see BIPZ.

3. Pair production in a uniform electric field (Schwinger effect)

This problem is also brand new. Please come ask me if something is confusing.

We wish to estimate the rate of charged particle anti-particle production from

the vacuum in the presence of a ginormous background uniform electric field. For

simplicity we’ll consider sometimes charged massive scalars,

S =

∫
d4xDµΦ?DµΦ−m2Φ?Φ, DµΦ = (∂µ − ieAµ) Φ.

Notice that this action is quadratic in Φ, so we should be able to make progress.

(a) We would like to compute the vacuum persistence amplitude, whose square

is the probability not to create particles. In terms of interaction picture

quantities, this is an element of the S-matrix:

S00 = 〈0| T ei
∫∞
−∞ V |0〉 .
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Think about trying to evaluate this by Wick contractions in scalar QED

or ordinary QED (treating the gauge field as a background), where V =∫
d3xΦ†Aµ∂

µΦ or
∫
d3xΨ̄ /AΨ respectively.

(b) Convince yourself by the exponentiation of the disconnected diagrams that

S00 = ei
∫
d4xw(x) uniform E

= eiV Tw/2.

(c) Convince yourself that Imw can be interpreted as the probability density

per unit time per unit volume for pair creation.

(d) [not really a question] Now we try to calculate w. It is actually just the

effective Lagrangian from integrating out the charged fields in the backround

electric field, just as in our path integral calculation of the chiral anomaly.

For the case of Dirac fermions,

eiV Tw[A] =

∫
[dψ]ei

∫
d4xΨ̄(i /D−m)Ψ = det

(
/D −m

)
= e

1
2

tr ln( /D2−m2)

so that

w =
i

2

∫ ∞
0

dT

T
e−iTm

2 〈x| e−i /D
2
T |x〉 .

Here we used the identity

ln
B

A
=

∫ ∞
0

dT

T

(
e−T (B+iε) − e−T (A+iε)

)
where A is a constant we can ignore. We can massage this expression to

arrive at the answer below, but it will be useful to think about it from the

point of view of a single particle.

(e) The only connected diagram is a single particle loop, in the background of

A. We could evaluate this in the same way as in the anomaly calculation in

lecture. Instead, because the process only ever involves one particle, we can

use the single-particle path integral.

The next few lines are instructions about how to arrive at a correct expres-

sion for that integral. If you wish, skip to (2). (An alternate route from

here to (2) can be found in Itzykson-Zuber, page 193-4.) For a relativistic

scalar particle, this is

w[A] =

∫
[dx]e−m

∫
ds
√
ẋ2−ie

∫
dsAµẋµ . (1)

The square root is bad, let’s get rid of it by introducing an auxiliary variable

(worldline metric) e:

w[A] '
∫

[dxde]e
−
∫
ds
(
m2e+ ẋ2

2e
−iAµẋµ

)
.

5



Solving the equations of motion for e and plugging back in gives back (1).

This path integral has a gauge redundancy of worldline reparametrizations,

s → s(τ), e → edτ
ds

. Fix this redundancy by setting e = constant. Actually

the value of this constant is meaningful (it is the proper time duration T of

the path) and we must integrate over it. The resulting integral is2

w[A] =

∫ ∞
0

dT

T
e−m

2T

∫
x(0)=x(T )

[dx]e−
∫ T
0 ds( 1

2
ẋ2+ieAẋ). (2)

We consider periodic orbits because we are studying vacuum matrix ele-

ments. 3 It is convenient to rescale T → m2T, s = Tu so that the period is

1:

w[A] =

∫ ∞
0

dT

T
e−T

∫
x(0)=x(1)

[dx]e
−
∫ 1
0 du

(
m2

2T
ẋ2+ieAẋ

)
. (3)

Do the T integral by saddle point.

Now focus on constant electric field, in the gauge A3 = Ex0. Find the

conditions for a saddle point of the X integral. Contract with ẋµ to show

that ẋ2 ≡ a2 is a constant (to be determined). Solve the equation (hint:

cyclotron orbits, x3(u) = m
eE

cos eEa
m
u, x0(u) = m

eE
sin eEa

m
u). Show that peri-

odicity requires a = m
eE

2πn, n ∈ Z.

Find the on-shell action. The solutions for n > 1 are multiple-instantons,

saddle points with smaller action than n = 1. Arrive at an expression of the

form

Imw ∼
∑
n=1

f(n)e−n
m2π
|eE|

where f(n) is a function to be determined by studying the gaussian fluctu-

ations about the saddles.

(f) Argue that our saddle point approximations were a good idea when m2 �
eE. This in fact that case for electric fields humans can make, if m is the

mass of the electron.

(g) Why is this a contribution to the imaginary part? Here we need to include

the fluctuations about the saddle point. They contribute a factor of 1√
detij Sij

where Sij denotes the matrix of second derivatives of the action. If this thing

has a negative eigenvalue (rather, an odd number of them) the
√

det will be

imaginary. See if you can verify the existence of a negative eigenvalue here.

2We can slimily justify the 1/T in the measure by demanding that the result is scale invariant

when m = 0. If you like worrying about this kind of factor, consider learning about perturbative

string theory.
3Actually: you can ask where did the factor of V T go. We really have a marked point on our

trajectory – the particle propagates from x to x, and we have to integrate over x.
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This process hasn’t been observed in vacuum so far, because we don’t know how to

make a big enough electric field to make the probability for production apprecia-

ble over human time and length scales. However, there are analogous phenomena

of dielectric breakdown in material insulators. See here for a discussion of the

analogy.
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