University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215C QFT Spring 2017 Assignment 9

Due 12:30pm Wednesday, June 7, 2017

1. An application of the anomaly to a theory without gauge fields.

Consider a 1+1d theory of Dirac fermions coupled to a background scalar field θ as follows:

$$\mathcal{L} = \bar{\Psi} \left(\partial \!\!\!/ + m e^{\mathbf{i} \theta \gamma^5} \right) \Psi.$$

We wish to ask: if we subject the fermion to various configurations of $\theta(x)$ (such as a domain wall where $\theta(x) = \pi \theta(x)$) what does the fermion number do in the groundstate?

(a) Convince yourself that when θ is constant

$$\langle j^{\mu} \rangle = 0$$

where $j^{\mu} = \bar{\Psi} \gamma^{\mu} \Psi$ is the fermion number current.

- (b) Minimally couple the fermion to a *background* gauge field A_{μ} . Let $e^{i\Gamma[A,\theta]} = \int [d\Psi]e^{iS}$. Convince yourself that the term linear in A in $\Gamma[A,\theta] = \text{const} + \int A_{\mu}J^{\mu} + \mathcal{O}(A^2)$ is the vacuum expectation value of the current $\langle j^{\mu} \rangle = J^{\mu}$.
- (c) Show that by a local chiral transformation $\Psi \to e^{i\theta(x)\gamma^5/2}$ we can remove from the action the position dependence from θ .
- (d) Where does the theta-dependence go? Use the 2d chiral anomaly to relate (j^μ) to ∂θ. Notice that the result is independent of m. [This relation was found by Goldstone and Wilczek. The associated physics is realized in Polyacetylene.]
- (e) Show that a domain wall where θ jumps from 0 to π localizes *fractional* fermion number.
- (f) [bonus problem] Consider the Dirac hamiltonian in the presence of such a soliton. Show that there is a localized mode of zero energy.

2. **T-duality: not just for the free theory.** [Polchinski problem 8.3] Here is a path integral derivation of T-duality which is more general than just a single free boson.

Consider the sigma model whose action is

$$S(\partial X, Y) = S(Y) + \frac{1}{4\pi\alpha'} \int d^2 z \left(\delta^{ab} G_{XX}(Y) \partial_a X \partial_b X + \left(\delta^{ab} G_{\mu X} + \epsilon^{ab} B_{\mu X} \right) \partial_a X \partial_b Y^{\mu} \right) .$$

Here Y^{μ} are a bunch of coordinates on which the background fields G, B may depend in arbitrarily complicated ways. X only appears through its derivatives.

- (a) Show that by replacing $\partial_{\mu}X$ by $\partial_{\mu}X + A_{\mu}$ we arrive at a theory with an invariance under local shifts of $X \to X + \alpha(x)$.
- (b) Add a 2d θ term $\mathbf{i}\phi F_{\mu\nu}$, with F = dA and the angle ϕ a dynamical field. Show that the path integral over ϕ undoes the previous step and returns us to the original model. Hint: use the gauge $\partial_{\mu}A^{\mu} = 0$.
- (c) Instead choose the gauge X = 0 and do the integral over A_{μ} . Identify ϕ as the T-dual variable. To get the period right, you need to think about non-perturbative parts of the gauge field path integral.

3. T-duality as EM duality of 0-forms.

In this problem we will contextualize the form of the T-duality map

$$\phi(z,\bar{z}) = \phi_L(z) + \phi_R(\bar{z}) \mapsto \phi(z,\bar{z}) \equiv \phi_L(z) - \phi_R(\bar{z})$$

in terms of more general duality maps on form fields.

Consider a massless p-form field a in D (euclidean) dimensions, more specifically, on \mathbb{R}^{D} . We will treat it classically. Suppose its eom are

$$\mathbf{d} \star \mathbf{d} a = 0$$

1

$$(\mathrm{d}a)_{\mu_1\cdots\mu_{p+1}} = \left(\partial_{\mu_1}a_{\mu_2\cdots\mu_{p+1}} \pm \mathrm{perms}\right) \frac{1}{(p+1)!}$$

The Hodge dual of a k-form is a d - k form:

$$(\star\omega_k))_{\mu_1\cdots\mu_{d-k}} \equiv \epsilon_{\mu_1\cdots\mu_d} \left(\omega_k\right)^{\mu_{d-k+1}\cdots\mu_d}$$

¹By this notation, I mean the following. The exterior derivative of a *p*-form is a p+1 form:

This equation says $\star da$ is closed, which on \mathbb{R}^D which has no nontrivial topology, this means it is exact: we can define $\star da = d\tilde{a}$.

For abelian gauge theory in D = 4 show that this map $a \to \tilde{a}$ takes $(E, B) \to (\tilde{E}, \tilde{B}) = (B, -E)$.

Show that the map between ϕ and $\tilde{\phi}$ is of this form, if we regard ϕ as a 0-form potential.

For help see this paper by Chris Beasley.

4. SU(2) current algebra from free scalar.

Consider again a compact free boson $\phi \simeq \phi + 2\pi$ in D = 1 + 1 with action

$$S[\phi] = \frac{R^2}{8\pi} \int \mathrm{d}x \mathrm{d}t \partial_\mu \phi \partial^\mu \phi. \tag{1}$$

[Notice that if we redefine $\tilde{\phi} \equiv R\phi$ then we absorb the coupling R from the action $S[\tilde{\phi}] = \frac{1}{8\pi} \int dx dt \partial_{\mu} \tilde{\phi} \partial^{\mu} \tilde{\phi}$ but now $\tilde{\phi} \simeq \tilde{\phi} + 2\pi R$ has a different period – hence the name 'radius'.²]

So: there is a special radius (naturally called the SU(2) radius) where new operators of dimension (1,0) and (0,1) appear, and which are charged under the boson number current $\partial_{\pm}\phi$. Their dimensions tell us that they are (chiral) currents, and their charges indicate that they combine with the obvious currents $\partial_{\pm}\phi$ to form the (Kac-Moody-Bardakci-Halpern) algebra $SU(2)_L \times SU(2)_R$.

Here you will verify that the model (1) does in fact host an $SU(2)_L \times SU(2)_R$ algebra involving *winding modes* – configurations of ϕ where the field winds around its target space circle as we go around the spatial circle. We'll focus on the holomorphic (R) part, $\phi(z) \equiv \phi_R(z)$; the antiholomorphic part will be identical, with bars on everything.

Define

$$J^{\pm}(z) \equiv e^{\pm i\phi(z)} :, \quad J^3 \equiv i\partial\phi(z).$$

The dots indicate a normal ordering prescription for defining the composite operator: no wick contractions between operators within a set of dots.

(a) Show that J^3, J^{\pm} are single-valued under $\phi \to \phi + 2\pi$.

(b) Compute the scaling dimensions of J^3 , J^{\pm} . Recall that the scaling dimension Δ of a holomorphic operator in 2d CFT can be extracted from its two-point correlation function:

$$\left\langle \mathcal{O}^{\dagger}(z)\mathcal{O}(0)\right\rangle \sim \frac{1}{z^{2\Delta}}$$
.

²Relative to the notation I used in lecture, I have set $\pi T \equiv R^2$. A note for the string theorists: I am using units where $\alpha' = 2$.

For free bosons, all correlation functions of composite operators may be computed using Wick's theorem and

$$\langle \phi(z)\phi(0)\rangle = -\frac{1}{R^2}\log z.$$

Find the value of R where the vertex operators J^{\pm} have dimension 1.

(c) Defining $J^{\pm} \equiv \frac{1}{\sqrt{2}} (J^1 \pm i J^2)$ show that the operator product algebra of these currents is

$$J^a(z)J^b(0) \sim \frac{k\delta^{ab}}{z^2} + i\epsilon^{abc}\frac{J^c(0)}{z} + \dots$$

with k = 1. This is the level-k = 1 SU(2)Kac-Moody-Bardakci-Halpern algebra. (d) [Bonus tedium] Defining a mode expansion for a dimension 1 operator,

$$J^a(z) = \sum_{n \in \mathbb{Z}} J^a_n z^{-n-1}$$

show that

$$[J_m^a, J_n^b] = i\epsilon^{abc} J_{m+n}^c + mk\delta^{ab}\delta_{m+n}$$

with k = 1, which is an algebra called Affine SU(2) at level k = 1. Note that the m = 0 modes satisfy the ordinary SU(2) lie algebra.

For hints (and some applications in string theory) see problem 5 here.