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1. An application of the anomaly to a theory without gauge fields.

Consider a 1+1d theory of Dirac fermions coupled to a background scalar field θ

as follows:

L = Ψ̄
(
/∂ +meiθγ

5
)

Ψ.

We wish to ask: if we subject the fermion to various configurations of θ(x) (such

as a domain wall where θ(x) = πθ(x)) what does the fermion number do in the

groundstate?

(a) Convince yourself that when θ is constant

〈jµ〉 = 0

where jµ = Ψ̄γµΨ is the fermion number current.

(b) Minimally couple the fermion to a background gauge field Aµ. Let eiΓ[A,θ] =∫
[dΨ]eiS. Convince yourself that the term linear in A in Γ[A, θ] = const +∫
AµJ

µ +O(A2) is the vacuum expectation value of the current 〈jµ〉 = Jµ.

(c) Show that by a local chiral transformation Ψ → eiθ(x)γ5/2 we can remove

from the action the position dependence from θ.

(d) Where does the theta-dependence go? Use the 2d chiral anomaly to relate

〈jµ〉 to ∂θ. Notice that the result is independent of m. [This relation

was found by Goldstone and Wilczek. The associated physics is realized in

Polyacetylene.]

(e) Show that a domain wall where θ jumps from 0 to π localizes fractional

fermion number.

(f) [bonus problem] Consider the Dirac hamiltonian in the presence of such a

soliton. Show that there is a localized mode of zero energy.
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2. T-duality: not just for the free theory. [Polchinski problem 8.3] Here is a

path integral derivation of T-duality which is more general than just a single free

boson.

Consider the sigma model whose action is

S(∂X, Y ) = S(Y )+
1

4πα′

∫
d2z
(
δabGXX(Y )∂aX∂bX +

(
δabGµX + εabBµX

)
∂aX∂bY

µ
)
.

Here Y µ are a bunch of coordinates on which the background fields G,B may

depend in arbitrarily complicated ways. X only appears through its derivatives.

(a) Show that by replacing ∂µX by ∂µX + Aµ we arrive at a theory with an

invariance under local shifts of X → X + α(x).

(b) Add a 2d θ term iφFµν , with F = dA and the angle φ a dynamical field.

Show that the path integral over φ undoes the previous step and returns us

to the original model. Hint: use the gauge ∂µA
µ = 0.

(c) Instead choose the gauge X = 0 and do the integral over Aµ. Identify φ

as the T-dual variable. To get the period right, you need to think about

non-perturbative parts of the gauge field path integral.

3. T-duality as EM duality of 0-forms.

In this problem we will contextualize the form of the T-duality map

φ(z, z̄) = φL(z) + φR(z̄) 7→ φ̃(z, z̄) ≡ φL(z)− φR(z̄)

in terms of more general duality maps on form fields.

Consider a massless p-form field a in D (euclidean) dimensions, more specifically,

on RD. We will treat it classically. Suppose its eom are

d ? da = 0 .

1

1By this notation, I mean the following. The exterior derivative of a p-form is a p+ 1 form:

(da)µ1···µp+1
=
(
∂µ1aµ2···µp+1 ± perms

) 1

(p+ 1)!

The Hodge dual of a k-form is a d− k form:

(?ωk))µ1···µd−k
≡ εµ1···µd

(ωk)
µd−k+1···µd .
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This equation says ?da is closed, which on RD which has no nontrivial topology,

this means it is exact: we can define ?da = dã.

For abelian gauge theory in D = 4 show that this map a → ã takes (E,B) →
(Ẽ, B̃) = (B,−E).

Show that the map between φ and φ̃ is of this form, if we regard φ as a 0-form

potential.

For help see this paper by Chris Beasley.

4. SU(2) current algebra from free scalar.

Consider again a compact free boson φ ' φ+ 2π in D = 1 + 1 with action

S[φ] =
R2

8π

∫
dxdt∂µφ∂

µφ. (1)

[Notice that if we redefine φ̃ ≡ Rφ then we absorb the coupling R from the action

S[φ̃] = 1
8π

∫
dxdt∂µφ̃∂

µφ̃ but now φ̃ ' φ̃+ 2πR has a different period – hence the

name ‘radius’.2]

So: there is a special radius (naturally called the SU(2) radius) where new opera-

tors of dimension (1, 0) and (0, 1) appear, and which are charged under the boson

number current ∂±φ. Their dimensions tell us that they are (chiral) currents, and

their charges indicate that they combine with the obvious currents ∂±φ to form

the (Kac-Moody-Bardakci-Halpern) algebra SU(2)L × SU(2)R.

Here you will verify that the model (1) does in fact host an SU(2)L×SU(2)R al-

gebra involving winding modes – configurations of φ where the field winds around

its target space circle as we go around the spatial circle. We’ll focus on the holo-

morphic (R) part, φ(z) ≡ φR(z); the antiholomorphic part will be identical, with

bars on everything.

Define

J±(z) ≡: e±iφ(z) :, J3 ≡ i∂φ(z).

The dots indicate a normal ordering prescription for defining the composite op-

erator: no wick contractions between operators within a set of dots.

(a) Show that J3, J± are single-valued under φ→ φ+ 2π.

(b) Compute the scaling dimensions of J3, J±. Recall that the scaling dimension

∆ of a holomorphic operator in 2d CFT can be extracted from its two-point

correlation function: 〈
O†(z)O(0)

〉
∼ 1

z2∆
.

2Relative to the notation I used in lecture, I have set πT ≡ R2. A note for the string theorists: I

am using units where α′ = 2.
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For free bosons, all correlation functions of composite operators may be computed

using Wick’s theorem and

〈φ(z)φ(0)〉 = − 1

R2
log z.

Find the value of R where the vertex operators J± have dimension 1.

(c) Defining J± ≡ 1√
2
(J1 ± iJ2) show that the operator product algebra of these

currents is

Ja(z)J b(0) ∼ kδab

z2
+ iεabc

J c(0)

z
+ ...

with k = 1. This is the level-k = 1 SU(2)Kac-Moody-Bardakci-Halpern algebra.

(d) [Bonus tedium] Defining a mode expansion for a dimension 1 operator,

Ja(z) =
∑
n∈Z

Janz
−n−1

show that

[Jam, J
b
n] = iεabcJ cm+n +mkδabδm+n

with k = 1, which is an algebra called Affine SU(2) at level k = 1. Note that the

m = 0 modes satisfy the ordinary SU(2) lie algebra.

For hints (and some applications in string theory) see problem 5 here.
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