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1. An application of the anomaly to a theory without gauge fields.

Consider a 141d theory of Dirac fermions coupled to a background scalar field 8
as follows:
L=T ((}9 + meie“*S) U,

We wish to ask: if we subject the fermion to various configurations of #(x) (such
as a domain wall where §(z) = 76(z)) what does the fermion number do in the
groundstate?

(a) Convince yourself that when 6 is constant

(4) =0

where j# = U~*W¥ is the fermion number current.

(b) Minimally couple the fermion to a background gauge field A,. Let 'TA¢ =

[[dV]e’. Convince yourself that the term linear in A in I'[4, 0] = const +
[ A J* 4+ O(A?) is the vacuum expectation value of the current (j#) = J*.

0(x)

(¢) Show that by a local chiral transformation ¥ — ¢?@)°/2 we can remove

from the action the position dependence from 6.

(d) Where does the theta-dependence go? Use the 2d chiral anomaly to relate
(7#) to 00. Notice that the result is independent of m. [This relation
was found by Goldstone and Wilczek. The associated physics is realized in
Polyacetylene.]

(e) Show that a domain wall where 6 jumps from 0 to 7 localizes fractional
fermion number.

(f) [bonus problem] Consider the Dirac hamiltonian in the presence of such a
soliton. Show that there is a localized mode of zero energy.



2. T-duality: not just for the free theory. [Polchinski problem 8.3] Here is a
path integral derivation of T-duality which is more general than just a single free
boson.

Consider the sigma model whose action is

S(0X,Y) = S(Y)+ / 2 (0"Gxx(Y)0. XX + (0°Gux + € Bux) 0, X0Y") .

4drad

Here Y* are a bunch of coordinates on which the background fields G, B may
depend in arbitrarily complicated ways. X only appears through its derivatives.

(a) Show that by replacing 0,X by 0,X + A, we arrive at a theory with an
invariance under local shifts of X — X + a(z).

(b) Add a 2d 0 term i¢F,,, with F' = dA and the angle ¢ a dynamical field.
Show that the path integral over ¢ undoes the previous step and returns us
to the original model. Hint: use the gauge 9,A" = 0.

(c) Instead choose the gauge X = 0 and do the integral over A,. Identify ¢
as the T-dual variable. To get the period right, you need to think about
non-perturbative parts of the gauge field path integral.

3. T-duality as EM duality of 0-forms.
In this problem we will contextualize the form of the T-duality map
0(2,2) = 61(2) + dr(2) = 6(2,2) = 61.(2) — Or(2)

in terms of more general duality maps on form fields.

Consider a massless p-form field a in D (euclidean) dimensions, more specifically,
on RP. We will treat it classically. Suppose its eom are

dxda=0.

1

By this notation, I mean the following. The exterior derivative of a p-form is a p + 1 form:

1

(da) (p+ 1)

M1 fp+1 = (aﬂlaﬂ2“'ﬂp+l + perms)

The Hodge dual of a k-form is a d — k form:

(*wk))p‘l“'/—"d—k = €py-pg (wk)'u'd*kJrl"',“'d .



This equation says *da is closed, which on R” which has no nontrivial topology,
this means it is exact: we can define xda = da.

For abelian gauge theory in D = 4 show that this map a — a takes (F,B) —
(E,B) = (B, —E).

Show that the map between ¢ and ¢ is of this form, if we regard ¢ as a 0-form
potential.

For help see this paper by Chris Beasley.

4. SU(2) current algebra from free scalar.

Consider again a compact free boson ¢ ~ ¢ + 27 in D = 1 + 1 with action
2

S[g] = ?—W / dzdtd,$0" o, (1)

[Notice that if we redefine ¢ = R¢ then we absorb the coupling R from the action
S[g] = = [ d:vdt@u&@“q; but now ¢ ~ ¢ + 27 R has a different period — hence the
name ‘radius’.?]

So: there is a special radius (naturally called the SU(2) radius) where new opera-
tors of dimension (1,0) and (0, 1) appear, and which are charged under the boson
number current d+¢. Their dimensions tell us that they are (chiral) currents, and

their charges indicate that they combine with the obvious currents di¢ to form
the (Kac-Moody-Bardakci-Halpern) algebra SU(2); x SU(2)g.

Here you will verify that the model (1) does in fact host an SU(2), x SU(2)p al-
gebra involving winding modes — configurations of ¢ where the field winds around
its target space circle as we go around the spatial circle. We’ll focus on the holo-
morphic (R) part, ¢(z) = ¢r(z); the antiholomorphic part will be identical, with
bars on everything.

Define
JE(2) = 9@ . P =i0¢(2).

The dots indicate a normal ordering prescription for defining the composite op-
erator: no wick contractions between operators within a set of dots.

(a) Show that J3, J* are single-valued under ¢ — ¢ + 2.

(b) Compute the scaling dimensions of J?, J%. Recall that the scaling dimension
A of a holomorphic operator in 2d CFT can be extracted from its two-point

correlation function: 1
<OT(2)(9(O)> ~— .

ZZA

2Relative to the notation I used in lecture, I have set 77 = R2. A note for the string theorists: I
am using units where o/ = 2.


http://arxiv.org/pdf/1405.2123v1.pdf

For free bosons, all correlation functions of composite operators may be computed
using Wick’s theorem and

(6(2)6(0)) = 5 log =

Find the value of R where the vertex operators J* have dimension 1.

(¢) Defining J* = \/Li((]1 +1J?%) show that the operator product algebra of these
currents 1s

kb J(0
- +z‘e“”cﬁ+...
y4 z

with & = 1. This is the level-k = 1 SU(2)Kac-Moody-Bardakci-Halpern algebra.

J(2)J°(0) ~

(d) [Bonus tedium] Defining a mode expansion for a dimension 1 operator,

JUz) = Z Joy Tt

nez
show that
[J8, I8 = e JE .+ mkd™ 6, n

with & = 1, which is an algebra called Affine SU(2) at level k£ = 1. Note that the
m = 0 modes satisfy the ordinary SU(2) lie algebra.

For hints (and some applications in string theory) see problem 5 here.


http://physics.ucsd.edu/~mcgreevy/fall07/psets/pset03.pdf

