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1. Simple stabilizer codes.

I’ve mentioned the toric code as an important solvable example of topological

order. We can solve it because it is an example of what is called a stabilizer code.

This means that the systems is made from a bunch of qubits and all the terms

in the Hamiltonian are made of Pauli Xs and Zs1 and all commute with each

other. This problem is a warmup problem to get used to this idea.

(a) Consider the Hamiltonian on two qbits

−H = X1X2 + Z1Z2.

Show that the terms commute and that the groundstate is

|00〉+ |11〉√
2

.

(b) Consider the (non-local) Hamiltonian on N qbits

HGHZ = −X1 · · ·XN −
N−1∑
i=1

ZiZi+1. (1)

Show that all the terms commute. Show that the groundstate is (the ‘GHZ

state’ or ‘cat state’)
|00...0〉+ |11...1〉√

2
.

1A comment about notation: the notation σx
` , σ

z
` is pretty terrible (at least for someone with

deteriorating eyesight like me) because the crucial information (x or z) is hidden in the superscript.

Much better is to write

σx
` ≡ X`, σ

z ≡ Z`.

Also, I use |0〉, |1〉 to denote the ±1 eigenstates of Z, and |±〉 to denote the ±1 eigenstates of X.
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(c) [bonus] Show that the following circuit U produces the GHZ state from the

product state |0〉⊗N .

|0〉N · · ·

|0〉N−1 · · · •
...

|0〉3 · · ·

|0〉2 • · · ·

|0〉1 H • · · ·

Let me explain the notation. Each horizontal line represents a qubit. H

represents the ‘hadamard gate’ acting on one qubit by H |↑〉 = |+〉 , H |↓〉 =

|−〉, i.e.

H = |+〉〈↑ |+ |−〉〈↓ |. (2)

The vertical line segments represent the ‘control-X gate’ that acts on two

qubits by

CX = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X. (3)

(The first qubit is the one with the black dot, and the second is the one

with the circled +.)

Notice that this circuit has depth N .

(d) [bonus] What state does U produce from |1〉1 ⊗ |0〉
⊗N−1?

(e) [bonus] Find the result of feeding the Hamiltonian −
∑

i Zi (whose ground-

state is the product state |0〉⊗N) through the circuit, i.e. what is

U

(
−
∑
i

Zi

)
U † ?

Hint: use the rules for the action of CX by conjugation given in lecture.

2. Gauge theory can emerge from a local Hilbert space.

The Hilbert space of a gauge theory is a funny thing: states related by a gauge

transformation are physically equivalent. In particular, it is not a tensor product

over independent local Hilbert spaces associated with regions of space. Because of

this, there is much hand-wringing about defining entanglement in gauge theory.

The following is helpful for thinking about this. It is a realization of Z2 lattice

gauge theory, beginning from a model with no redundancy in its Hilbert space.

In this avatar it is due to Kitaev and is called the toric code.

2

http://xxx.lanl.gov/abs/quant-ph/9707021


To define the Hilbert space, put a qubit on every link ` of a lattice, say the 2d

square lattice, so that H = ⊗`H`. Let σx` , σ
z
` be the associated Pauli operators,

and recall that {σx` , σz`} = 0. H` = span{|σz` = 1〉 , |σz` = −1〉} is a useful basis

for the Hilbert space of a single link.

One term in the hamiltonian is associated with each site j → Aj ≡∏
l∈j σ

z
l and one with each plaquette p→ Bp ≡

∏
l∈∂p σ

x
l , as indicated

in the figure at right.

H = −Γe
∑
j

Aj − Γm
∑
p

Bp.

(a) Show that all these terms commute with each other.

(b) The previous result means we can diagonalize the Hamiltonian by diagonal-

izing one term at a time. Let’s imagine that Γe � Γm so we’ll minimize

the ‘star’ terms Aj first. Which states satisfy the ‘star condition’ Aj = 1?

In the σx basis there is an extremely useful visualization: we say a link l

of Γ̂ is covered with a segment of string (an electric flux line) if σzl = −1

(so the electric field on the link is el = 1) and is not covered if σzl = +1

(so the electric field on the link is el = 0): ≡ (σz` = −1). Draw all

possible configurations incident on a single vertex j and characterize which

ones satisfy Aj = 1.

(c) [bonus] What is the effect of adding a term ∆H =
∑

` gσ
x? Convince

yourself that in the limit Γe � Γm, for energies E � Γe, this is identical to

Z2 lattice gauge theory, where Aj = 1 is a discrete version of the Gauss law

constraint.

(d) Set g = 0 again. In the subspace of solutions of the star condition, find

the groundstate(s) of the plaquette term. First consider a simply-connected

region of lattice, then consider periodic boundary conditions.

3. Groundstate degeneracy and 1-form symmetry algebra.

(a) Suppose we have a system with Hamiltonian H with string operators WC

and VČ supported on closed curves, and commuting with H, and satisfying

WN = V N = 1.

In all parts of this problem you should make the assumption that the string

operators are deformable: WC acts in the same way as WC+∂p on ground-

states.
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Suppose [WC ,WC′ ] = 0, [VČ , Č
′] for all curves but

WCVČ = ω#(C∩Č)VČWC

where ω ≡ e
2πi
N and #

(
C ∩ Č

)
is the number of intersection points of the

curves. How many groundstates does such a system have on the two-torus

(that is, with periodic boundary conditions on both spatial directions)?

This is what happens in the ZN toric code.

(b) Now suppose in a different system we have just one set of string operators

WC satisfying

WCWC′ = ω#(C∩C′)WC′WC ,

with the same definitions as above. How many groundstates does this system

have on the two-torus?

This is what happens in the Laughlin fractional quantum Hall state with

filling fraction 1
N

.

(c) [Bonus problem] Redo the previous problems for a genus g Riemann surface,

i.e. the surface of a donut with g handles.

4. Simplicial homology and the toric code. [Bonus]

The toric code is a physical realization of homology, a construction that extracts

topological invariants of topological spaces. This problem explains the relation.

(a) The toric code we’ve discussed so far has qbits on the links ` ∈ ∆1(∆) of a

graph ∆. But the definition of the Hamiltonian involves more information

than just the links of the graph: we have to know which vertices v lie at the

boundaries of each link `, and we have to know which links are boundaries

of which faces. The Hamiltonian has two kinds of terms: a ‘plaquette’

operator Bp =
∏

`∈∂pX` associated with each 2-cell (plaquette) p ∈ ∆2(∆).

and ‘star’ operators, As =
∏

`∈∂−1(s) Z`, associated with each 0-cell (site)

s ∈ ∆0(∆). Here I’ve introduced some notation that will be useful, please

be patient: ∆k denotes a collection of k-dimensional polyhedra which I’ll

call k-simplices or more accurately k-cells – k-dimensional objects making

up the space. (It is important that each of these objects is topologically a

k-ball.) This information constitutes (part of) a simplicial complex, which

says how these parts are glued together:

∆d
∂→ ∆d−1

∂→ · · ·∆1
∂→ ∆0 (4)

where ∂ is the (signed) boundary operator. For example, the boundary of a

link is ∂` = s1− s0, the difference of the vertices at its ends. The boundary
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of a face ∂p =
∑

`∈∂p ` is the (oriented) sum of the edges bounding it. By

∂−1(s) I mean the set of links which contain the site s in their boundary

(with sign).

Think of this collection of objects as a triangulation (or more generally some

chopping-up) of a smooth manifold X. Convince yourself that the sequence

of maps (4) is a complex in the sense that ∂2 = 0 (mod two).

(b) [not actually a question] This means that the simplicial complex defines a set

of homology groups, which are topological invariants of X, in the following

way. (It is homology and not cohomology because ∂ decreases the degree

k). To define these groups, we should introduce one more gadget, which is

a collection of vector spaces over some ring R (for the ordinary toric code,

R = Z2)

Ωp(∆, R), p = 0...d ≡ dim(X)

basis vectors for which are p-simplices:

Ωp(∆, R) = spanR{σ ∈ ∆p}

– that is, we associate a(n orthonormal) basis vector to each p-simplex

(which I’ve just called σ), and these vector spaces are made by taking linear

combinations of these spaces, with coefficients in R. Such a linear combina-

tion of p-simplices is called a p-chain. It’s important that we can add (and

subtract) p-chains, C + C ′ ∈ Ωp. A p-chain with a negative coefficient can

be regarded as having the opposite orientation. We’ll see below how better

to interpret the coefficients.

The boundary operation on ∆p induces one on Ωp. A chain C satisfying

∂C = 0 is called a cycle, and is said to be closed.

So the pth homology is the group of equivalence classes of p-cycles, modulo

boundaries of p+ 1 cycles:

Hp(X,R) ≡ ker (∂ : Ωp → Ωp−1) ⊂ Ωp

Im (∂ : Ωp+1 → Ωp) ⊂ Ωp

This makes sense because ∂2 = 0 – the image of ∂ : Ωp+1 → Ωp is a subset

of ker (∂ : Ωp → Ωp−1). It’s a theorem that the dimensions of these groups

are the same for different (faithful-enough) discretizations ∆ of X. Further-

more, their dimensions (as vector spaces over R) bp(X) contain (much of2)

the same information as the Betti numbers defined by de Rham cohomol-

ogy. For more information and proofs, see the great book by Bott and Tu,

Differential forms in algebraic topology.

2I don’t want to talk about torsion homology.
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(c) A state of the toric code on a cell-complex ∆ can be written (for the hamilto-

nian described above, this is in the basis where Z` is diagonal) as an element

of Ω1(X,Z2),

|Ψ〉 =
∑
C

Ψ(C) |C〉

where C is an assignment of an element of Z2 in X (the eigenvalue of Z`).

For the case of Z2 coefficients, 1 = −1 mod 2 and we don’t care about the

orientations of the cells. Show that the conditions for a state Ψ(C) to be

a groundstate of the toric code (As |Ψ〉 = |Ψ〉 ∀s and Bp |Ψ〉 = |Ψ〉 ∀p) are

exactly those defining an element of H1(X,Z2).

(d) Consider putting a spin variable on the p-simplices of ∆. More generally,

let’s put an N -dimensional hilbert space HN ≡ span{|n〉 , n = 1..N} on each

p-simplex, on which act the operators

X ≡
N∑
n=1

|n〉 〈n|ωn =


1 0 0 . . .

0 ω 0 . . .

0 0 ω2 . . .

0 0 0
. . .

 , Z ≡
N∑
n=1

|n〉 〈n+ 1| =


0 1 0 0

0 0 1 0
...

...
...

. . .

1 0 0 . . .


where ωN = 1 is an nth root of unity. If you haven’t already, check that

they satisfy the clock-shift algebra: ZX = ωXZ. For N = 2 these are Pauli

matrices and ω = −1.

Consider the Hamiltonian

Hp = −Jp−1

∑
s∈∆p−1

As − Jp+1

∑
µ∈∆p+1

Bµ − gp
∑
σ∈∆p

Zσ

with

As ≡
∏

σ∈∂−1(s)⊂∆p

Zσ

Bµ ≡
∏
σ∈∂µ

Xσ .

This is a lattice version of p-form ZN gauge theory, at a particular, special

point in its phase diagram (the RG fixed point for the deconfined phase).

Show that

0 = [As, As′ ] = [Bµ, Bµ′ ] = [As, Bµ], ∀s, s′, µ, µ′

so that for gp = 0 this is solvable.

(e) Show that the groundstates of Hp (with gp = 0) are in one-to-one corre-

spondence with elements of Hp(∆,ZN).
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