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Physics 230 Quantum Phases of Matter, Spr 2024
Assignment 3 —  Solutions

Due 11pm Thursday, April 25, 2024

Problems about Abelian Chern-Simons theory and its relation to QHE.

1. Another quantized coupling constant. Consider the worldline theory of
a charged particle. The degrees of freedom are the coordinates of the particle
2(t),i = 1..d as a function of time, a QFT in 0 + 1 with d fields. We might

include terms like
&up3/ﬁ(%n@f—vw0. (1)

Suppose the particle is charged under a U(1) symmetry, and we would like to
couple it to a background gauge field A,. This means that its worldline action
contains a term of the form

‘ﬂAﬂ:q/AEq/ﬁﬁ&@@) (2)

This is an example of a Chern-Simons term in 041 dimensions.

The path integral measure €4 should be invariant under gauge transforma-

tions
A, — A+ ig_lﬁug (3)

where g(t) = €% is an element of U(1). Show that this means that the charge
g must be quantized. Hint: consider the case where the worldline is a circle.

2. Quantization of the level.

(a) Show that the Chern-Simons action is gauge invariant under a — a +dJ, as
long as there is no boundary of spacetime Y. Compute the variation of the
action in the presence of a boundary of 3.

(b) Actually, the situation is a bit more subtle than the previous part suggests.
The actual form of a U(1) gauge transformation is

a—a—ig tdg

where g = e**. This reduces to the previous expression for the gauge trans-
formation when A is small, but the latter ignores the global structure of the
gauge group (e.g. in the abelian case, the fact that g is a periodic function).
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Consider the case where spacetime is ¥ = S! x S?. Find the variation of
the U(1) Chern-Simons action

k
Sg[a]—/zﬂa/\da

under a large gauge transformation, meaning that
g=e

where 6 is the coordinate on the circle. Conclude that in the absence of
other interestingness (such as degenerate groundstates not coming from the
dynamics of a), the level k£ must be an even integer.

Here is the logic: Since the action appears in the path integral in the form
el convince yourself that the path integrand is gauge invariant if

(1) Jp f € 2nZ for all closed 2-surfaces I' in spacetime, and

(2) k € 2Z — the Chern-Simons level is quantized as an even integer.

The first condition is called flux quantization, and is closely related to Dirac’s
condition.

The quantization of the level k, i.e. the Chern-Simons coupling, has a dra-
matic consequence: it means that this coupling constant cannot be renormal-
ized by a little bit, only by an integer shift. This is an enormous constraint
on the dynamics of the theory.

Let’s write w = d¢ = —ig~'dg. This is a closed form, dw = 0, but it is not
exact, since ¢ is not necessarily a globally well-defined function (it can jump
by 27 anywhere).

The variation is 6.5y = ﬁ wa A da. You might be tempted to integrate
by parts and say dw = 0 and therefore this vanishes. But a is not globally
well-defined, so it’s not true that d of something involving a has to vanish
on a closed manifold. A familiar example is |, g2 ' = 27 for the sphere
surrounding a magnetic monopole.

We can argue that % [ wAdais 2r times an integer by following the logic:
first show that it’s topological, in the sense of independent of local variations
of its arguments, then evaluate it on nice configurations where we can do
the integral.

The first step follows because both w and da are closed. For the second step,
we can choose a nice 3-manifold, such as S* x S?, where the period of the
circle is L and the coordinate is t (¢t =t + L). Consider a field configuration
where the gauge flux is constant in ¢t. If we take g = e@, then w = 2%dt,



we find

ko (For
0Sg = —— —dt k7.
0 47T 0 L /52 f E i
~——
€2’

Therefore, k£ must be an even integer, if there is nothing else around to make
the amplitude gauge invariant. But, you say, we’'ve been talking about the
case k = 1 all the time as a description of the integer QHE! The answer
is that the theory with odd k& does make sense, but only if the system is
fermionic. We'll come back to this later.

(c) [bonus| In the case where G is a non-abelian lie group, the argument for
quantization of the level k is more straightforward. Show that the variation
of the CS Lagrangian

k 2
Log=—trlaANda+-aNaa
4 3

under a — gag~' — dgg~! is

k k
Les — Log + —dtrdgg™ A a + ——tr (g_ldg A g tdg A g_ldg) .
AT 127

The integral of the second term over any closed surface is an integer. Con-
clude that e'%¢s is gauge invariant if k£ € Z.

The first term integrates to zero on a closed manifold. The second term is
the winding number of the map g : ¥ — G

3. Hall conductivity from Chern-Simons theory

(a) For the abelian Chern-Simons theory with gauge group U(1) at level k,

S[a,A]z/(%a/\da—i—AA;i—:).

do the (gaussian!) path integral over a to find the effective action for the
background field A. Find the Hall conductivity.

See the next problem.

(b) Now do it for the general K matrix and general charge vector !, with

K da’
S[aI,A]—/(Zl—;]aI/\da‘]—l—A/\t[%).

Let’s just do it all at once. The path integral is

/[Da]eis[a,A] _ eiSeﬁ[A}.
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Since the Hall conductivity is a local quantity, let’s just put the system on
the plane or the sphere, where there is no opportunity for a to create any
topological mischief, and we can just do the integral. Complete the square
in the exponent:

K da!
i/ A da” + AN
4 2T

—i % (o + (K treA) d (o’ + (K1) 1.4)
. [2_71: ((K_l)IKtKA> d((K_l)JLtLA>. (4)

Now change variables in the integral a! — af + (K _1)1K tig A. On the plane
this is fine, and the integral is just a constant. All that is left is

ANdA
Seﬂz—tl(Kl)”tJ/ -

We conclude that the Hall conductivity is

2
o™ = %t[ (K_l)IJ tJ.

I should make here a legal disclaimer that although the integral over a is
gaussian and therefore it is irresistible to do the integral, it is not quite safe
to integrate it out. You can see this from the fact that we get a CS theory
for A with a level that is not an integer! The reason this is consistent with
gauge invariance for the background U(1) gauge group is that a large gauge
transformation takes one groundstate of a to a different one.

4. Flux attachment. Now consider

S;lA] —/(ﬁa/\da—i—a/\*j).

Find the equations of motion. Show that the Chern-Simons term attaches k units
of flux to the particles: Fio o p.

5. Anyons.

(a) Show using the Bohm-Aharonov effect that the particles whose current den-
sity is j# have anyonic statistics with exchange angle 7 (supposing they were
bosons before we coupled them to A).



One way to do this is to consider a configuration of j which describes one
particle adiabatically encircling another. Show that its wavefunction ac-

quires a phase e>™/*. This is twice the phase obtained by going halfway
around, which (when followed by an innocuous translation) would exchange

the particles.
See the next problem.
Describe the statistics of the anyonic quasiparticles in the case with general
K matrix.
The EoM are
[;—:da‘] = *Jr

which means da! = 27 (K _1)1‘] * js. Bringing anyon one with charge [, all
the way around anyon two with charge [, gives the phase

Dy, = (ll)fjial = (h)l/ . 2 (KN (pa), = 27 (1), (K™ (1), .

The exchange phase is half of this.



