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1. A simple avatar of the Lieb-Schulz-Mattis theorem. Consider the effective

theory describing a system living in the continuum that spontaneously forms a

solid, say a cubic lattice in d dimensions. Since translation symmetry is spon-

taneously broken, the degrees of freedom must include a collection of Goldstone
bosons 6!, where I = 1..d runs over the spatial dimensions. 6/(x) is the shift

of the atom at location x in the I direction relative to its equilibrium position.

These fields live on a circle, because if I shift all the atoms by the lattice spacing,

I get back the original lattice.

(a)

Convince yourself that the effective action takes the form
Setastic[0'] = / d™r k59,05 0,6% + terms with more derivatives, (1)

where the coupling constant x“XZ is the elasticity tensor. With various
symmetries imposed, it can be decomposed further into various tensors with
names from the 19th century. These tensors describe things like bending

moduli — the rigidity of the solid to various kinds of strain.

Because the 67 are Goldstone bosons, they can only appear in terms with
derivatives. Rotation invariance forbids terms with a single derivative.

Now suppose that the number of atoms is a conserved quantity. That is,
consider a situation where there is also a U(1) symmetry. So we can couple
the system to a background gauge field A, for this U(1) symmetry. We’ll
assume this U(1) symmetry is not spontaneously broken. What are the
leading terms in the (local!) effective action Seg|6”, A,] that preserve gauge
invariance and translation symmetry?

I wrote the most interesting ones below. There can also be terms involving
dA.

Consider the case of d = 1. In addition to the terms involving dA, one
interesting term is

S,[0,A] = 21 / ANdY = 21 / drdtA,d,0e™ . (2)

™ ™



One point to notice about it is that it is not obviously gauge invariant,
because it depends explicitly on A and not just the gauge-invariant object
F. Show that €' is gauge invariant if v is an integer.

Under a gauge transformation, it changes by

v

-1
5S, = o /d&/\g dg. (3)

This is not obviously zero. But we don’t actually need the variation of the
action to be zero, we just need it to be an integer multiple of 27i, since it
only ever appears exponentiated in the path integral. And in fact, if § and
g are continuous functions and spacetime has no boundaries, (3) is always
27miv times an integer. (To see this, first show that it is invariant under
small changes of g or 6:

5(0S,)  3(3S,)

T R

So it is topological. Then we can compute it for some representative con-
figuration. If, for definiteness, we periodically identify the spacetime coor-
dinates, (3) is an expression for (27i times) the winding number of the map
T — T2 (x,t) — (g9(x,t),0(x,t)). Note that maps g : spacetime — G that
are not continuously connected to the map to the identity are called ‘large
gauge transformations’.) Therefore, if v € Z, then (2) is gauge invariant'.

(d) What does the new term (2) do? Well, the first question we should ask about
an effective action for a background gauge field is: what is the resulting
charge density:

08
= ?
Interpret your result.

€T =
) = 3@~ o
This equation correctly expresses the fact that deforming the lattice away
from a uniform configuration will make the density vary.

! Alternatively, if spacetime is a manifold without boundary, we can integrate by parts and write

v
S- 2 fonr

This is manifestly gauge invariant, but it is not manifestly single-valued under 8 — 6 + 27, as it must
be to be well-defined. Fortunately, |, s F/2m € Z is an integer if A is a background U(1) gauge field on
a manifold S without boundary (this is called flux quantization), and so again we conclude that e~
is well-defined if v € Z.



The --- is contributions from other terms in the action, such as a term
like [ Agpo that adds a background density. If po is constant in time and
integrates to an integer, this is also gauge invariant. More generally, we
could add [ A,j* which you can show is gauge invariant (even under large
gauge transformations) as long as d,j* = 0.

What is the analog of (2) in d dimensions? (That is, find a term in d spatial
dimensions involving a single power of A and derivatives of the ! that can
be written without using the metric.) Show that its coefficient v is quantized
to be an integer. What contribution does it make to the density?

We can identify the goldstone field # with the phase field describing the
displacements of the atoms from their equilibrium positions:

u'(z,t) = %a’ﬁ[(x,t) —a

where d are generators of the lattice I'. Then the equilibrium configuration
is actually 67 (z,t) = K!x' where K] (%)]I = ¢, so K! is the matrix whose
columns are the reciprocal lattice generators.

The generalization of (2) in d spatial dimensions is

ﬁ/m\dmme%wdad. (4)

Again v € Z is required by gauge invariance. This gives the density

(z) = oS v l
PR = 5 A0(x) — (2mydd e

611"“8@-1911 . axid gfd.

Plugging in the equilibrium configuration gives

det K v
po(x) =v——0 =

@2md VvV
where V' = deta is the volume of the unit cell. This says that v is the
(integer!) number of atoms per unit cell.

The conclusion you should find by the gauge invariance argument above,
under the present assumptions, is that v, and hence the equilibrium number
of particles per unit cell, must be an integer. This is an avatar of the Lieb-
Schulz-Mattis-Oshikawa-Hastings (LSMOH) theorem. Now, you may say to
yourself, why can’t I make a system at some filling which is not an integer?
Indeed, I can take 20007 particles and place them in a volume with 20004
unit cells, and the system must have some groundstate. What gives?



2. Edge modes of CS theory. Now we return to abelian Chern-Simons theory
(for an extra challenge, redo this part in the non-Abelian case). If there is a
boundary of spacetime, something must be done to fix up the fact that the
action is not invariant under would-be gauge transformations that are nontrivial
at the boundary. Consider the case where > = R x UHP where R is the time
direction, and UHP is the upper half-plane y > 0. One way to fix the problem is
simply to declare that the would-be gauge transformations which do not vanish
at y = 0 are not redundancies. This means that they represent physical degrees
of freedom.

(a) First consider the simplest case of U(1) CS theory at level k. Choose ag =0

gauge, and plug the solution of the bulk equations of motion a = J¢ (where
o(x,y — 0) = ¢(x) is a scalar field, and d is the exterior derivative on the
spatial manifold) into the Chern-Simons action to find the resulting action
for ¢.
The exterior derivative on this spacetime decomposes into d = 0ydt + d
where d is just the spatial part, and similarly the gauge field is a = aodt + a.
Let us choose the gauge ag = 0. We must still impose the equations of
motion for ay (in the path integral it is a Lagrange multiplier) which says
da =0 (just the spatial part). This equation is solved by a = do (or rather
a = g 'dg where g is a U(1)-valued function). This is pure gauge except at
the boundary. Plugging this into the CS term gives

S=1 RXDa/\(dtﬁt+d)a (5)
=) do A dtd,ds (6)
k - ~
=) <¢ A dtatdqb) (7)
Stokes k 7
. Pdtd,de (8)
k
) dzdt$d,0,¢ (9)
Pk drdtd, 0,6, (10)
4 JrxoD

(b) We can also add local terms at the boundary to the action. Consider adding
AS=yg/ o5 a2 (for some coupling constant g). Find the equations of motion
for ¢.



This term evaluates to AS = [, v (0,6)° . Altogether we now have

k
Sedge[¢] = /0 dmdtam¢ (Eat(b + gam¢) .

The EoM is then

0
06(x)

which is solved if ﬁ@gb + 90,0 = 0. This describes a dispersionless wave

which moves only in the signk direction — a chiral bosonic edge mode.

k
Sedge[(b] = at (E8t¢ + gaa:¢)

For more, I recommend the textbook by Xiao-Gang Wen.

Interpretation: the Chern-Simons theory on a space with boundary neces-
sarily produces a chiral edge mode.

(c) If you feel like it, redo the previous parts for the general K-matrix theory.



