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1. Charges of quasiparticles in abelian CS EFT.

In an abelian CS theory with K-matrix K, show that a quasiparticle with charge

`I under CS gauge field aI has electric charge

ql = tK−1l.

The EFT for a charge at the origin is

L =
1

4π
KIJa

IdaJ +
1

2π
AtIda

I + `Ia
I
0δ

2(x).

The EOM for aI0 is

0 =
δS

δa0

=
1

2π
Kda+ `δ2

so

da = 2πK−1`δ.

The source for A0 is then

1

2π
tIda

I = tK−1`δ2(x).

2. Quasiparticle wavefunctions.

(a) Use the flux-threading argument starting from the Laughlin ν = 1
m

state to

construct wavefunctions for the quasihole and quasiparticle. That is, write

down a wavefunction of N electrons with the property that it acquires a

phase e±iθ when the coordinate zi of any electron is taken around the point

zi = w by an angle θ: zi − w → eiθ(zi − w), ∀i = 1..N .

In the latter case, don’t forget to project onto the lowest Landau level.

Alternatively, you can try to use the parton construction, i.e. add or remove

a single parton.

A simple (parton-independent) way to motivate the quasihole wavefunction

is to find the wavefunction that results by threading 2π flux at the point w
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in the complex plane. (We saw earlier that on general grounds, if the state is

gapped, this produces an excitation with statistics πσxy.) Threading 2π flux

at w means that the wavefunction should acquire the phase eiθ when we move

any of the electrons around the point w: zi − w → eiθ(zi − w), ∀i = 1..N .

A very easy way to accomplish this is to multiply the wavefunction by the

factor
N∏
i=1

(zi − w) .

That’s it. No need for an LLL projection, since it’s still holomorphic. The

full wavefunction for a quasihole at w is then

Ψ̃w(z) =
N∏
i=1

(zi − w)
N∏
i<j

(zi − zj)me
−

∑
i
|zi|

2

4`2
B .

Notice that this is still a wavefunction for N electrons.

The quasiparticle wavefunction should acquire the opposite phase, so we’d

like to multiply by
N∏
i=1

(z̄i − w̄)

but that’s not a LLL wavefunction. The projection of this to the LLL is the

quasiparticle wavefunction.

Ψ̃w̄(z) = PLLL
N∏
i=1

(z̄i − w̄)
N∏
i<j

(zi − zj)m =
∏
i

(
2`2
B∂zi − w̄

)∏
i<j

(zi − zj)m.

Let’s try acting on the parton groundstate with a single parton annihilation

operator, fα(w), where α is a species label on the partons: c =
∏

α fα. The

problem with this idea is that it removes a parton. But the projection to

the gauge invariant Hilbert space requires that there be the same number

of electrons as each type of parton, so that the state has a nonzero overlap

Ψ(r) = 〈0|
∏

i c(ri) |parton state〉.
If we act with a single creation operator f †(η), we must start occupying the

second parton Landau level, so that’s a good sign that we’ll need a LLL

projection.

But I conclude that at the moment I don’t know how to motivate the Laugh-

lin quasihole and quasiparticle wavefunctions from partons. Please let me

know if you do.
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(b) Using the plasma analogy, show that your quasihole wavefunction produces

a localized charge deficit of charge 1/m.

See the footnote in the answer to the next part.

(c) Construct a wavefunction with two quasiholes and use it to verify their

statistics (by adiabatically moving them around each other and computing

the resulting Berry phase).

This calculation was first done here.

The state is

Ψ̃12(z) =
∏
i=1

(zi − w1)
∏
i=1

(zi − w2)
∏
i<j

(zi − zj)m.

Let’s compute the Berry connection for varying w1:

Aw1 = 〈Ψ12| i∂w1 |Ψ12〉 .

First we have to make sure the state is normalized: the normalization factor

is

Z(w) =

∫ N∏
i=1

d2zi
∏
i

|w1 − zi|2|w2 − zi|2
∏
i<j

|zij|2me−
∑
|z|2/(2`2B), (1)

and I’ll write Ψ = Z−1/2Ψ0. So

Aw1 = i(Z−1 〈Ψ0| ∂w1 |Ψ0〉 −
1

2
〈Ψ0|Z−1∂w1 logZ |Ψ0〉 (2)

= i

(〈∑
i

1

w1 − zi

〉
− 1

2
∂w1 logZ

)
(3)

=
1

2
〈Ψ12|

∑
i

i

w1 − ẑi
|Ψ12〉 . (4)

The Berry phase accumulated by moving w1 in a circle (of radius, say R)

around w2 is then

γ12 ≡
∮
Cw2

dw1Aw1 + h.c. (5)

=
1

2
〈Ψ12| i

∮
Cw2

dw1

∑
i

1

w1 − ẑi
|Ψ12〉+ h.c. (6)

=
1

2
〈Ψ12| (−2π)

∑
i

Θ(ẑi ∈ Cw2) |Ψ12〉+ h.c. (7)
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where we used Cauchy’s theorem, and

Θ(s) ≡

{
1, if the statement s is true

0, else
.

This last expression is the average number of electrons inside the circle of

radius R about w2 (times −2π). If there were no quasihole at w2, this

would be (for large enough R) just −2πν Φ
Φ0

, where Φ =
∫
Cw2

~B · d~a is the

flux through the circle. This contribution is not necessarily 2π times an

integer, and would be there even if the path C did not go around another

quasihole. It represents the Aharonov-Bohm phase acquired by the particle,

which you can see therefore has charge 1/m.

The presence of the quasihole at z = w2 decreases the electron density. It

decreases the expected number of electrons in the neighboring region by 1
m

1,

and therefore the contribution from w2 to the Berry phase is γ12 = −2π 1
m

.

The quasihole exchange phase is then

θ12 =
γ12

2
=
π

m
= πν.

See David Tong’s notes pp 93-96 for some more discussion of this calculation.

I think the trick I used above is a successful simplification.

1Here I am appealing to a result from the plasma analogy. The charge density

ρ(z, z̄) =

∫ N∏
i=2

d2zi|Ψw(z, z2 · · · zN )|2 =

∫ N∏
i=2

d2zie

∑
1<i<j log |zi−zj |2+

∑
1<i log |z−w|

2−
∑

i
|zi|

2

2`2
B

in the quasihole wavefunction is the density of a one-component plasma of charge-m objects (with

logarithmic mutual interactions) that see a neutralizing background (that’s the quadratic term) plus

an extra potential from a fixed impurity of positive unit charge at z = w. As Girvin and Yang say

(page 447), ‘the chief desire of the plasma is to maintain charge neutrality’. This is accomplished by

forming a screening cloud near z = w to screen the impurity. Screening the cloud requires a deficit

of 1/mth of a charge-m particle. Those particles sit at the electron positions, so this is 1/mth of an

electron missing.
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