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1. Su-Schrieffer-Heeger model as an SPT. Consider the following system,

which we can regard as protected by G = U(1) × Z2 in D = 1 + 1. It is a

sort of model of polyacetylene, which looks something like this:

The Hilbert space is a representation of two complex fermion modes per unit cell

(ca and cb – we’ll ignore spin), with Hamiltonian

H = −
∑
j

(
t1c
†
jacjb + h.c.

)
−
∑
j

(
t2c
†
jac(j+1)b + h.c.

)
. (1)

(The strengths of the hopping amplitudes t1 and t2 model the lengths of the two

kinds of bonds in the figure.)

(a) Describe the physics of an open chain at half-filling (one particle per unit

cell) in the limits (t1, t2) = (1, 0) and (t1, t2) = (0, 1).

In the first case, it is just a bunch of molecules, each of which has a unique

groundstate. In the second case one mode is left out at each end. There is

therefore a fourfold degenerate groundstate, depending on whether or not

we occupy the modes at each end.

(b) Diagonalize H in the momentum basis and draw the spectrum. What hap-

pens when t1 = t2?

In momentum space, the hamiltonian takes the form

H =

∮
d̄k
(
c†ka, c

†
kb

)
H(k)

(
cka
ckb

)
with

H(k) =

(
0 t1 + t2e

ik

t?1 + t?2e
−ik 0

)
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The spectrum of H(k) = ~h(k) · ~σ is ±|h(k)|. Here ~h = (hx, hy, hz) =

(t1 + cos kt2, sin kt2, 0), so

ε±(k) = ±
√

(t1 + t2 cos k)2 + t22 sin2 k

which looks like:

for t1 6= t2. When t1 = t2, there is a Dirac point at k = π:

(c) Check that if t1,2 are real, then this model has an antiunitary Z2 particle-hole

symmetry acting by

C : ca ↔ c†a, cb ↔ −c
†
b, i↔ −i.

What does this symmetry do to the single-particle hamiltonianH(k) defined

by H =
∮

d̄k
(
c†ka, c

†
kb

)
H(k)

(
cka
ckb

)
? What does this imply for the single-

particle spectrum?

This operation takes

tc†acb → t?ca(−c†b) = +t?c†bca
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which is the +h.c. term as long as t is real.

Notice that it takes H(k) → −H(k). This is the nature of a particle-hole

symmetry. It therefore guarantees that the spectrum has a level at ε and a

level at −ε for each k, i.e. is symmetric under ε→ −ε.
I found this StackExchange answer by Ruben Verresen quite helpful in writ-

ing this problem.

(d) Compute the polarization

P =
1

2π

∮
dk 〈ψk| i∂k |ψk〉

at half-filling (one particle per unit cell) as a function of t1/t2. (In this

expression |ψk〉 is the occupied state.) Relate the resulting surface charge

to your answer in part 1a.

We use the fact that the groundstate ofH(k) = ~h·~σ with ~h = h(sin θ cosϕ, sin θ sinϕ, cos θ)

is

ψ− =

(
sin
(
θ
2

)
e−iϕ

− cos
(
θ
2

) ) .
Therefore its Berry connection is

A− = A−ϕdϕ+A−θ dθ

with

A−ϕ = sin2

(
θ

2

)
, A−θ = 0.

(Notice that this gives F−θϕ = ∂θA−ϕ − ∂ϕA−θ = 1
2

sin θ and hence
∫
S2 F = 2π

– minimal nontrivial Berry flux. It is a minimal Dirac monopole.)

In our problem, we have hz = 0 = cos θ, so θ = π/2, we are stuck on the

equator of the Bloch sphere. And

hx = h cosϕ = t1 + t2 cos k, hy = h sinϕ = t2 sin k

or more neatly

h ≡ hx + ihy = t1 + t2e
ik.

At half-filling only the lower eigenstate at each k is occupied. Therefore,

2πP =

∮
A− =

∮
A−ϕ

∂ϕ

∂k
dk =

∮
sin2

(
θ

2

)
∂ϕ

∂k
dk =

1

2

∮
C

dϕ

(note that sin2
(
π
4

)
= 1

2
is the origin of the factor of two) where C is the

trajectory of the hamiltonian h(k) in the complex plane. This is equal to

half the winding number of the map q : S1 → S1 given by q = h(k)
|h(k)| .
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(e) What happens to the polarization if we allow imaginary hoppings? Can you

use this to design a Thouless pump?

Actually nothing happens to it. As long as there is no σz term, the polar-

ization is quantized as a half-integer.

(f) [Bonus] What happens at a domain wall between a region with t1/t2 > 1

and one with t1/t2 < 1?

See the discussion in problem 4e here.

(g) Actually, the model (1) has many symmetries. Check that the unitary

particle-hole symmetry

S : ca ↔ c†a, cb ↔ −c
†
b, i↔ i

also preserves H. (Note that C = ST where T : c → c, i → −i is ordinary

time reversal symmetry.) What does S do to H(k)?

(h) Show that the single-particle hamiltonian H(k) has the form

H(k) = hx(k)σx + hy(k)σy = ~h(k) · ~σ (2)

with |h(k)|2 nonzero for all k (where h(k) ≡ hx(k) + ihy(k)). It therefore

defines a map from the Brillouin zone to R2 \ {0} ' S1

H(k) : S1 → R2 \ {0}

which has a winding number ν ∈ Z. Respecting the symmetry S thus

produces an integer classification of such states.

Here is a plot of the path of the hamiltonian as k varies across the BZ:
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What is the physical interpretation of ν > 1? Can you find an S-invariant

Hamiltonian that has ν > 1?

Relate this winding number (mod two) to the polarization.

The polarization is only defined mod one, since a rephasing of the wavefuc-

tion by eik shifts A → A+ dk. But 2P = ν mod two.

(i) What terms can you add to H that respect C but break S? What terms

respect S but break C? What do these do to the Z-valued invariant?

S forbids terms like c†aca that hop from one sublattice to itself, and produce

a σz term in H(k). Therefore S guarantees that H(k) is of the form (2), so

it provides a map from R2 \ {0} → S1 (rather than R3 \ {0} ' S2) and so

the winding number about the origin is an invariant. Such a term is allowed

by C, as long as it has a purely imaginary coefficient:

∆H =
∑
j

iλ
(
c†jac(j+1)a + h.c.− c†jbc(j+1)b + h.c.

)
with λ real, which produces ∆H = λσz sin k.

(j) [Bonus] This has been a long problem, and I’ve still left out a crucial part of

the story about polyacetylene. This is that the dimerization pattern, t1/t2
is a dynamical variable, a mode of the lattice. Because the energy of the

electrons is lowered when t1/t2 6= 1, the system prefers to be dimerized. But

the potential for t1/t2 is symmetric about 1, so the dimerization pattern

spontaneously breaks a Z2 symmetry. The domain walls of this broken

symmetry are the ones in part 1f. They carry charge but not spin, unlike

the electron. (Pretend that we included the spin degree of freedom of the

electron in all of the above.) Use this to explain the observation that upon

doping in extra charge, the conductivity of polyacetylene increases rapidly,

but the magnetic susceptibility does not.

(k) [Bonus] Find the spectrum of an open chain (of, say, 10 or 15 unit cells),

and plot it as a function of t1/t2. Watch the edge states get absorbed into

the continuum near the phase transition. Plot the wavefunctions of the edge

states and compare them to generic states.
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Here is the spectrum for N = 10 unit cells:
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Here’s a plot for N = 30 unit cells:

that shows that the hybridization of the edge states happens closer to the

transition at t1/t2 = 1 as we increase the system size.

Here is a plot of the two mid-gap modes for N = 20 (left) and a generic

mode (right):

Notice that the mid-gap modes are (a) localized at the two ends, as expected

from the continuum analysis, and (b) supported on only one of the two

sublattices.
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2. Chern-number changing transition.

Consider the following approximate single-particle Hamiltonian for a particle in

D = 2 + 1:

H(k) = v(kxσx + kyσy) +mσz

(valid near ~k = 0), describing a single Dirac cone as m→ 0.

(a) [Bonus] Argue that, up to relabellings and rescalings, this is the generic form

for the single-particle Hamiltonian near a point in parameter space where

two bands are colliding.

(b) Compute the Chern number of the bands as a function of m.

Again we use the formula for the Berry connections of the two states of the

hamiltonian H = ~h · ~σ, which are (for H |±〉 = ±|h| |±〉) :

A± =
1± cos θ

2
dϕ, F± = ±sin θ

2
dθdϕ

with
~h = h(sin θ cosϕ, sin θ sinϕ, cos θ) = (vkx, vky,m).

Here h ≡ |h| =
√
v2k2 +m2. We therefore identify

h(k) =
m

cos θ
, sin θeiϕ =

v

h
(kx + iky) =

vk

h
eiϕ

and therefore we can identify the angle in the kx, ky plane with ϕ. The

relationship between k and θ is a little more complicated:

cos θ =
m

h
, sin θ =

vk

h
so

cos θdθ = ∂k(vk/h)dk

and therefore
dθ

dk
=
mv

h2
.

As a function of k the polar angle looks like this for m > 0 and m < 0

respectively:
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For m > 0 and m < 0 respectively, the images on the Bloch sphere of a disk

around the origin in k space is the upper and lower hemisphere:

In each case, k = 0 is at the pole (north or south, respectively) and as

k increases, we approach the equator. Thus the two hemispheres are tra-

versed with opposite orientation, and we can already conclude from this that∫
DK
F− K→∞→ ±π for the two cases (where DK is a disk of radius K centered

at the Dirac point).

Pulled back to k-space, the Berry flux density is

F±dθdϕ = ±sin θ

2
dθdϕ = ±vk

2h

mv

h2
dkdϕ = ±mv

2

2

kdkdϕ

h3
.

Notice that the two bands have equal and opposite Berry flux. And notice

that the Berry flux is proportional to m and changes sign if m changes sign.

For the integrated flux through this disk of radius K, we find therefore

γK ≡
∫
DK

F± = ±mv
2

2

∫ K

0

kdk

(m2 + k2v2)3/2
= ±π m

|m|

(
1− |m|√

m2 + v2K2

)
.
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For the lower band, as a function of K this looks like:

(the two curves are for m > 0 and m < 0. Notice that the Berry flux

asymptotes to π (mod 2π).

Actually the relationship between h and k is unnecessary if we use Stokes’

theorem. The Berry flux (of the lower band) in a disk of radius K about

the origin in k space is ∫
DK

F− Stokes
=

∮
∂DK

A−.

Here is a density plot of the Berry flux (the origin of k-space is in the middle

of the picture) for m 6= 0:

(c) Argue that such an H cannot arise from a local lattice model, without

additional contributions to the Berry curvature elsewhere in the Brillouin

zone.
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We found that a loop around the Dirac point sees π Berry flux:
∮
∂DK
A− = π.

But in a lattice model, we can deform this contour so that it reaches the

boundary of the Brillouin zone and annihilates itself and therefore should

subtend no flux.
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