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Physics 230 Quantum Phases of Matter, Spr 2024
Assignment 8

Due 11pm Thursday, June 6, 2024

The following problems are all bonus problems.

1. Helical majorana mode on a surface domain wall of a TI.

Consider a D = 3 + 1 fermion topological insulator protected by charge conser-

vation and time-reversal symmetry. If we stick an s-wave superconductor on the

surface, we can gap out the surface Dirac cone, but the vortices are interesting

because they carry majorana zeromodes.

What happens if we (somehow) produce on the surface a domain wall in the phase

of the superconducting order? That is, suppose that on the surface (z = 0), when

y > 0 the superconducting pairing field is ∆ = ∆0, but for y < 0, it is ∆ = eiγ∆0

for some phase γ. If γ = π, what happens on the D = 1 + 1 dimensional locus at

y = 0?

2. Majorana chain.

Consider the majorana chain

H = i
∑
i

(teγiγ̃i + toγ̃iγi+1)

with {γi, γj} = δij = {γ̃i, γ̃j}, {γi, γ̃i} = 0.

(a) Show that the Hamiltonian can be rewritten as a p-wave superconductor of

spinless electrons.

(b) Find the energy spectrum. Check that when te = to, the gap closes.

3. Majorana lasagna.

Consider a layer in the coupled-layer construction to be the critical limit of the

Kitaev chain, that is, a massless 1+1d Majorana fermion field. Apply the coupled-

layer construction to make a model in D = 2 + 1 dimensions with no symmetry.

What 2+1d free-fermion SPT state do you make this way?

4. All-fermion toric code.
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(a) Check that U(1)4 CS theory with K-matrix

KSO(8) =


2 −1 −1 −1

−1 2 0 0

−1 0 2 0

−1 0 0 2


has the same spectrum of anyons as the all-fermion toric code.

(b) Check that the statistics of the 16 anyons in two copies of the toric code is

related to that of two copies of the all-fermion toric code by a relabelling.

(At least check the self-statistics.)

(c) [Super bonus] A perhaps better way to address the previous part, using

the result of the first part: show that the U(1)8 Chern-Simons theory with

K-matrix

KSO(8) ⊕
(
−KSO(8)

)
is equivalent to two copies of the toric code, plus trivial theories. (Note

that we are not worried about preserving any symmetry here, so there is no

notion of charge vector, and the theory with K = σx is trivial.)

5. Cluster state from group cohomology.

(a) A projective representation of G = Z2 × Z2 is given by π rotations of a

spin-half particle. Call the elements of G = {e, x, y, z} (with multiplication

table 
e x y z

x e z y

y z e x

z y x e

 .

Then we can take the representation matrices to be

U(e) = 1, U(x) = iX,U(y) = iY, U(z) = iZ.

Check that this is a projective representation of G

U(g)U(h) = ν(e, g, gh)U(gh)

and find the 2-cocycle ν. Check that it satisfies the cocycle condition.

(b) Show that we can regard the single-site Hilbert spaceH0 = span{|e〉 , |x〉 , |y〉 , |z〉}
as a pair of qubits, and write the state

|1〉 =
∑
g∈G

|g〉

in terms of the Pauli operators on this qubit.
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(c) Find the solvable Hamiltonian that results from the construction of Chen-

Gu-Wen:

H = −U
∑
i

|1i〉〈1i|U †

in terms of the Pauli operators.

Compare to the cluster hamiltonian

H = −
∑
i

Zi−1XiZi+1 = −UCZXiU
†
CZ ,

with UCZ ≡
∏

i CZi,i+1 where CZ is the control-Z operation.

6. Haldane phase from the path integral.

In this problem we will give a field theory description of a spin-s antiferromagnetic

chain with G = SO(3) symmetry.

Consider the D = 1 + 1 nonlinear sigma model with target space S2 at θ = 2πs.

The field variable is a 3-component unit vector n̂ ∈ S2. The fact that π2(S
2) =

Z will play an important role. Think of this ~n as arising from coherent-state

quantization of a spin chain. So take the (imaginary-time) action to be

S =

∫
dτdx

(
1

g2
∂µn̂ · ∂µn̂+ i

θ

4π
εabcn

a∂τn
b∂xn

c

)
.

We will focus on θ ∈ 2πZ, integer spin. In this case the model (flows to strong

coupling g → ∞ in the IR and) has a gap (we take this as an assumption). We

would like to understand what is different between θ = 0 and θ = 2π.

Recall the role of the θ term: Because θ multiplies a quantity that evaluates to

an integer on a closed spacetime manifold MD,

ZMD
(θ) ≡

∫
[Dn]e−S =

∑
n∈π2(S2)

eiθnZn

and ZMD
(θ) = ZMD

(θ + 2π). In particular, we can take MD = S1 × ND−1 to

compute the partition function on any spatial manifold ND−1. This means the

bulk spectrum is periodic in θ with period 2π.

The θ term is a total derivative in the action, so it can manifest itself when we

study the path integral on a spacetime with boundary.

(a) Put this field theory on the half-line x > 0. Suppose that the boundary

conditions respect the SO(3) symmetry, so that the boundary values ~n(τ, x =

0) are free to fluctuate. By remembering that the θ-term is a total derivative,
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and considering the strong-coupling (IR) limit, g → ∞, show that there is

a spin-1
2

at the boundary. (Hint: Recall the coherent state path integral for

a spin-1
2
.)

(b) Now cut the path integral open at some fixed euclidean time τ = 0. (Con-

sider periodic boundary conditions in space.) Such a path integral computes

the groundstate wavefunction, as a function of the boundary values of the

fields, ~S(x, τ = 0). Find the groundstate wavefunctional is Ψ[~n(x, τ = 0)]

in the strong coupling limit g →∞ (where the gap is big).
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