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1. Polyacetylene returns.

On the previous homework, you may have wondered what is the connection be-

tween the field theory we were studying (a scalar coupled to fermions in D = 2)

and polyacetylene. I’d like to explain that connection a bit.

Consider an extension of the model above to include also phonon modes, i.e. de-

grees of freedom encoding the positions of the ions in the solid. (Again we ignore

the spins of the electrons for simplicity.)

H = −t
∑
n

(1 + un)c†ncn+1 + h.c.+
∑
n

K(un − un+1)
2 ≡ HF +HE.

Here un is the deviation of the nth ion from its equilibrium position (in the

+x direction), so the second term represents an elastic energy. Assume periodic

boundary conditions and an even number of sites.

(a) Consider a configuration

un = φ(−1)n (1)

where the ions move closer in pairs. Compute the electronic spectrum.

(Hint: this enlarges the unit cell. Define c2n ≡ an, c2n+1 ≡ bn, and solve in

Fourier space, an ≡
∮

d̄ke2iknak etc.) You should find that when φ 6= 0 there

is a gap in the electron spectrum (unlike φ = 0). Expand the spectrum near

the minimum gap and include the effects of the field φ in the continuum

theory.

(b) Peierls’ instability. Compute the groundstate energy of the electrons HF

in the configuration (1), at half-filling (i.e. the number of electrons is half

the number of available states). Check that you recover the previous answer

when φ = 0. Interpret the answer when φ = 1.

Compute HE in this configuration, and plot the sum of the two as a function

of φ. Choosing the parameters so the minimum is in the small-φ region, find

the minimum.

(c) You should find that the energy is independent of the sign of φ. This means

that there are two groundstates. We can consider a domain wall between a

region of + and a region of −. Show that this domain wall carries a fermion

mode whose energy lies in the bandgap and whose filled and empty states

have charge ±1
2
.
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(d) [bonus] Verify the result of the previous part by diagonalizing the relevant

tight-binding matrix.

(e) [bonus] Time-reversal played an important role here. If we allow complex

hopping amplitudes, we can make a domain wall without midgap modes.

Explain this from field theory. Bonus: explain this from the lattice hamil-

tonian.

2. Anomaly cancellation in the Standard Model. If we try to gauge a chiral

symmetry (such as hypercharge in the Standard Model (SM)), it is important

that it is actually a symmetry, i.e. is not anomalous. In D = 3 + 1, a possible

anomaly is associated with a choice of three currents, out of which to make a

triangle diagram. We’ll call a “G1G2G3 anomaly” the diagram with insertions of

currents for G1,G2 and G3. Generalizing a little, we showed that the divergence

of the current for G1 is

∂µj
Aµ
1 =

1

32π2
εµνρσF 2B

µν F
3C
ρσ

∑
f

(−1)f trR(f){TA1 , TB2 }TC3 .

The sum is over each Weyl fermion, R(f) is its representation under the combined

group G1×G2×G3, and TA1 are a basis of generators of the Lie algebra of G1 etc.

in the representation of the field f . By (−1)f I mean ± for left- and right-handed

fermions respectively.

We consider the possibilities in turn.

(a) Convince yourself that the divergence of the U(1)Y hypercharge current gets

a contribution of the form

∂µJ
µ
Y =

(∑
left

Y 3
l −

∑
right

Y 3
r

)
g′2

32π2
εµνρσBµνBρσ

from the triangle with three insertions of the current itself (here B is the

hypercharge gauge field strength). The sum on the RHS is over all left-

and right-handed Weyl spinors weighted by the cube of their hypercharge.

Check that this sum evaluates to zero in the SM.

(b) Show that any anomaly of the form SU(N)U(1)2 or SU(N)G1G2 is zero.

(c) (Easy) Convince yourself that there is no SU(3)3 anomaly for QCD.

(d) Check that there is never an SU(2)3 anomaly. (Hint: the generators satisfy

{τa, τ b} = 2δab.)

(e) Show that the SU(3)2U(1)Y anomaly demands that 2YQ−Yu−Yd = 0. Check

that this is true in the SM.
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(f) Show that a necessary condition for hypercharge to not have an anomaly

with the Electroweak gauge bosons on the RHS is YL + 3YQ = 0, where YL
and YQ are the hypercharges of the left-handed leptons and quarks. Check

that this works out in the SM.

(g) There is another kind of anomaly called a gravitational anomaly. This is

a violation of current conservation in response to coupling to curved space.

An example is of the form

∂µj
µ
Y = atrR∧R

where R is a two-form related to the curvature of spacetime (analogous

to the field strength F ). The coefficient a is proportional to
∑

left trYl −∑
right trYr. Check that this too vanishes for hypercharge in the Standard

Model.

These conditions, plus the assumption that the right-handed neutrino is neutral,

actually determine all the hypercharge assignments.

(h) [bonus] Show that the previous statement is true.

There are various points of view from which the anomalies determine the

charge assignments.

One is: Given the SU(3)× SU(2)L representations, the actual hypercharges

are the only way to satisfy all the anomaly constraints that is chiral. From

this point of view, the fact that the hypercharges are all integer multiples

of 1/6 (so that U(1)Y is compact) is an outcome of anomaly cancellation.

Another is: Assuming that the hypercharges are quantized (in some units),

the choice in the SM is the only chiral choice, even without using the grav-

itational chiral anomaly constraint. This is a consequence of Fermat’s Last

Theorem.

(i) [bonus] Show that U(1)B and U(1)L are anomalous, but have all opposite

anomalies, so that U(1)B−L is non-anomalous. Here all quarks (antiquarks)

have charge 1/3 (−1/3) under U(1)B, and all leptons (antileptons) have

charge 1 (−1) under U(1)L.
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