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1. The Hohenberg-Mermin-Wagner-Coleman Fact.

(a) Consider a massless scalar X in 2d, with (Euclidean) action

S[X] =
1

4πg

∫
d2σ∂aX∂

aX. (1)

Show that the euclidean propagator

G2(z, z′) ≡ 〈X(z)X(z′)〉

satisfies

∇2G2(z, z′) = bδ2(z − z′) (2)

where z = σE1 + iσE2 , for some constant b; find b. Show that the solution is

given by

G2(z, z′) = a ln |z − z′|,

for some constant a (for example by Fourier transform); find a.

(b) The long-distance behavior of G2 has important implications for the sponta-

neous breaking of continuous symmetries in D = 2 – it can’t happen. Argue

that if a system with a continuous (say U(1), for definiteness) symmetry

were to have an unsymmetric groundstate, the excitations about that state

would include a field X with the action (1). Conclude from the form of G2

that there is in fact no long-range order.

2. Correlators of composite operators made of free bosons in 1+1 dimen-

sions.

Consider a collection of n two-dimensional free bosons Xµ governed by the (Eu-

clidean) action

S =
1

4πg

∫
d2σ∂aXµ∂

aXµ.

Until further notice, we will assume that X takes values on the real line.

[If X ∈ R, the coupling g can be absorbed into the definition of X if we prefer,

but it is useful to leave this coupling constant arbitrary for several reasons. First,

different physicists use different conventions for the normalization and as you will

see this affects the appearance of the final answer. But more importantly, in part

2d, g will become meaningful.]

1



(a) Compute the Euclidean generating functional

Z[J ] =
〈
e
∫

(d2σ)EJ
µXµ
〉
≡ Z−1

0

∫
[dX]e−Se

∫
(d2σ)EJ

µXµ

(where Z−1
0 ≡ Z[J = 0] but please don’t worry too much about the normal-

ization of the path integral).

[Hint: use the Green function from the previous problem, and Wick’s theo-

rem. Or use our general formula for Gaussian integrals with sources.]

[Warning: In the problem at hand, even the euclidean kinetic operator has a

kernel, namely the zero-momentum mode. You will need to do this integral

separately.]

[Cultural remark 1: this field theory describes the propagation of featureless

strings in n-dimensional flat space Rn – think of Xµ(σ) as the parametrizing

the position in Rn to which the point σ is mapped.

Cultural remark 2: this is an example of a conformal field theory. In par-

ticular recall that massless scalars in D = 2 have engineering dimension

zero.]

(b) Show that〈
N∏
i=1

: e−i
√

2α′ki·X(σ(i)) :

〉
= δn

(∑
i

kµi

)
N∏

i,j=1

|zi − zj|−α
′gki·kj (3)

where σ(i) label points in 2d Euclidean space, zi ≡ σ
(i)
1 + iσ

(i)
2 , α′ is a

parameter with dimensions of [X2/g] (called the ‘Regge slope’), and kµi are

a set of arbitrary n-vectors in the target space. The : ... : indicate the

following prescription for defining composite operators. The prescription is

simply to leave out Wick contractions of objects within a pair of : ... :. Give

a symmetry explanation of the delta function in k.

[Cultural remark: this calculation is the central ingredient in the Veneziano

amplitude for scattering of bosonic strings at tree level.]

(c) Conclude that the composite operator Oa ≡: eiaX : has scaling dimension

∆a = ga2

2
, in the sense that〈

Oa(z)O†b(0)
〉

= δ(a− b) 1

|z|2∆a
.

Notice that the correlation functions of these operators do not describe the

propagation of particles in any sense. The operator O produces some power-

law excitation of the CFT soup.
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(d) Suppose we have one field (n = 1) X which takes values on the circle, that

is, we identify

X ' X + 2πR .

What values of a label single-valued operators : eiaX : ? How should we

modify (3)?

3. The stress tensor is not a conformal primary if c 6= 0.

(a) For any 2d CFT, use the general form of the TT OPE to show that the

transformation of T under an infinitesimal conformal transformation z 7→ z+ξ(z)

is

δξT (w) = (ξ∂ + 2∂ξ)T (w) +
c

12
∂3ξ. (1)

(b) Consider the finite conformal transformation z 7→ f(z). Show that (1) is the

infinitesimal version of the transformation law

T (z) 7→ (∂f)2T (f(z)) +
c

12
{f, z}

where

{f, z} ≡
∂f∂3f − 3

2
(∂2f)2

(∂f)2

is called a Schwarzian derivative.

[Optional: verify that this extra term does the right thing when composing two

maps z → f(z)→ g(f(z)).]

(c) Given that the conformal map from the cylinder to the plane is z = e−iw,

show that (b) means that

Tcyl(w)(dw)2 =
(
Tplane(z)− c

24

)
(dz)2.

Use this relation to show that the Hamiltonian on the cylinder

H =

∫
dσ

2π
Tττ

is

H = L0 + L̃0 −
c+ c̄

24
.

Comment: After all this complication, the result has a very simple physical

interpretation: when putting a CFT on a cylinder, the scale invariance is spon-

taneously broken by the fact that the cylinder has a radius, i.e. the cylinder

introduces a (worldsheet) length scale into the problem. The term in the energy

extensive in the radius of the cylinder but not the length (and proportional to c)

is actually experimentally observable sometimes.
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4. SU(2) current algebra from free scalar.

Consider again a compact free boson φ ' φ+ 2π in D = 1 + 1 with action

S[φ] =
R2

8π

∫
dxdt∂µφ∂

µφ. (4)

[Notice that if we redefine φ̃ ≡ Rφ then we absorb the coupling R from the action

S[φ̃] = 1
8π

∫
dxdt∂µφ̃∂

µφ̃ but now φ̃ ' φ̃+ 2πR has a different period – hence the

name ‘radius’.1]

So: there is a special radius (naturally called the SU(2) radius) where new opera-

tors of dimension (1, 0) and (0, 1) appear, and which are charged under the boson

number current ∂±φ. Their dimensions tell us that they are (chiral) currents, and

their charges indicate that they combine with the obvious currents ∂±φ to form

the (Kac-Moody-Bardakci-Halpern) algebra SU(2)L × SU(2)R.

Here you will verify that the model (4) does in fact host an SU(2)L×SU(2)R al-

gebra involving winding modes – configurations of φ where the field winds around

its target space circle as we go around the spatial circle. We’ll focus on the holo-

morphic (R) part, φ(z) ≡ φR(z); the antiholomorphic part will be identical, with

bars on everything.

Define

J±(z) ≡: e±iφ(z) :, J3 ≡ i∂φ(z).

The dots indicate a normal ordering prescription for defining the composite op-

erator: no wick contractions between operators within a set of dots.

(a) Show that J3, J± are single-valued under φ→ φ+ 2π.

(b) Compute the scaling dimensions of J3, J±. Recall that the scaling dimension

∆ of a holomorphic operator in 2d CFT can be extracted from its two-point

correlation function: 〈
O†(z)O(0)

〉
∼ 1

z2∆
.

For free bosons, all correlation functions of composite operators may be computed

using Wick’s theorem and

〈φ(z)φ(0)〉 = − 1

R2
log z.

Find the value of R where the vertex operators J± have dimension 1.

1Relative to the notation I used in lecture, I have set πT ≡ R2. A note for the string theorists: I

am using units where α′ = 2.
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(c) Defining J± ≡ 1√
2
(J1 ± iJ2) show that the operator product algebra of these

currents is

Ja(z)J b(0) ∼ kδab

z2
+ iεabc

J c(0)

z
+ ...

with k = 1. This is the level-k = 1 SU(2)Kac-Moody-Bardakci-Halpern algebra.

(d) [Bonus tedium] Defining a mode expansion for a dimension 1 operator,

Ja(z) =
∑
n∈Z

Janz
−n−1

show that

[Jam, J
b
n] = iεabcJ cm+n +mkδabδm+n

with k = 1, which is an algebra called Affine SU(2) at level k = 1. Note that the

m = 0 modes satisfy the ordinary SU(2) lie algebra.

For hints (and some applications in string theory) see problem 5 here.

5. Constraints from Unitarity. Show that in a unitary CFT, c > 0, and h ≥ 0

for all primaries. Hint: consider 〈φ| [Ln, L−n] |φ〉.
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