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This talk is about ‘emergeability’ [Senthil]

Crucial step in EFT: identify
• degrees of freedom
• realization of symmetry.

Extra high-energy requirement:

Given a microphysical HUV , ( e.g. HUV = ⊗jHj)
do these dofs act on (a subspace of) HUV ?

Checks: all RG invariants must be the same.

Familiar hep-th avatar: ‘t Hooft anomaly matching.

A different kind of example: no gauge invariant fermion operators in an EFT

for a bosonic system.

This might be considered a

High-Energy Problem for Low-Energy Physicists.

Many examples, e.g.:
• can a p + ip superfluid be coupled to gravity without a spin structure?

• does a CFT always have a stress tensor?



High-energy physics point of view

Goal: Identify obstructions
to symmetry-preserving regulators of QFT,
by thinking about certain states of matter in one higher dimension
which have an energy gap
(i.e. E1 − Egs > 0 in thermodynamic limit).

These ‘SPT (symmetry-protected topological) states’
[Wen et al; Reviews: Turner-Vishwanath, 1301.0330; Senthil, review of ‘physics-based approach’ 1405.4015]

are machines for producing such obstructions.

(Their study is also a useful step toward understanding more difficult states.)



Plan

1. Introduction

2. Ideas about regularizing the Standard Model

[Wen, J. Wang-Wen, You-BenTov-Xu]

3. Constraints on 3+1d QFT

from symmetry-protected topological (SPT) states

In particular, we’ll identify constraints on manifest electric-magnetic

duality symmetry.
[Shauna Kravec, JM, 1306.3992, PRL

work in progress with Brian Swingle]

4. A machine for explicitly realizing SPT states

[Shauna Kravec, JM, Brian Swingle, in progress]



Realizations of symmetries in QFT and cond-mat

Basic Q: What are possible gapped phases of matter?

Def: Two gapped states are equivalent if
they are adiabatically connected
(varying the parameters in the H whose ground

state they are to get from one to the other,

without closing the energy gap).

One important distinguishing feature: how are the symmetries realized?

Landau distinction: characterize by broken symmetries
e.g. ferromagnet vs paramagnet, insulator vs SC. X

Mod out by Landau: “What are possible (gapped) phases that
don’t break symmetries?” How do we distinguish them?

One (fancy) answer: symmetries can be fractionalized.
[Wen]: topological order.
This means emergent deconfined gauge theory, long-range entanglement.



Mod out by Wen, too

“What are possible (gapped) phases that don’t break symmetries and don’t

have topological order?”

In the absence of topological order
(‘short-range entanglement’ (SRE), hence simpler),

another answer: Put the model on the space with boundary.

A gapped state of matter in d + 1 dimensions
with short-range entanglement

can be (at least partially) characterized (within some symmetry class of

hamiltonians) by (properties of) its edge states
(i.e. what happens at an interface with the vacuum,

or with another such state).



SRE states are characterized by their edge states

Rough idea: just like varying the Hamiltonian in time to

another phase requires closing the gap H = H1 + g(t)H2,

so does varying the Hamiltonian in space

H = H1 + g(x)H2.

I Important role of SRE assumption: Here we are assuming that the

bulk state has short-ranged correlations, so that changes we might make

at the surface cannot have effects deep in the bulk.



SPT states

Def: An SPT state (symmetry-protected topological state),
protected by a symmetry group G is:
a SRE state, which is not adiabatically connected to a product state by local

hamiltonians preserving G.

e.g.: free fermion topological insulators in 3+1d, protected by U(1) and T ,

have an odd number of Dirac cones on the surface.

One reason to care: if you gauge H ⊂ G, you get a state with topological order.

I Free fermion TIs classified [Kitaev: homotopy theory; Schneider et al: edge]

Interactions can affect the connectivity of
the phase diagram in both directions:

I There are states which are adiabatically connected only via interacting

Hamiltonians [Fidkowski-Kitaev, 0904.2197, Qi, Yao-Ryu, Wang-Senthil, You-BenTov-Xu].

I There are states whose existence requires interactions:
e.g. Bosonic SPT states – w/o interactions, superfluid.



Group structure of SPT states

Simplifying feature:

SPT states (for given G) form a group:

-A : is the mirror image.

• With bulk topological order, bulk quasiparticles still nontrivial. Not a group.

• There can be many realizations of the edge of A, same ‘SPT-ness’.
• The edge of A can be symmetric and gapped but topologically ordered.

Inverse of A cancels the SPT-ness of A’s edge.

• [Chen-Gu-Wen, 1106.4772] conjecture: the group is HD+1(BG,U(1)).
• ∃ ‘beyond-cohomology’ states in D ≥ 3 + 1 [Senthil-Vishwanath]

• The right group?: [Kitaev (unpublished), Kapustin, Thorngren].

Here: an implication of this group structure

– which we can pursue by examples – is...



Surface-only models

Counterfactual:
Suppose the edge theory of an SPT state were realized otherwise
– intrinsically in D dimensions, with a local hamiltonian.

Then we could paint that the conjugate local theory on the

surface without changing anything about the bulk state.

And then small deformations of the surface Hamiltonian,

localized on the surface, consistent with symmetries, can

pair up the edge states.

But this contradicts the claim that we could characterize the
D + 1-dimensional SPT state by its edge theory.

Conclusion: Edge theories of SPTG states cannot be regularized intrinsically in

D dims, exactly preserving on-site G –

“surface-only models” or “not edgeable”.
[Wang-Senthil, 1302.6234 – general idea, concrete surprising examples of 2+1 surface-only states
Wen, 1303.1803 – attempt to characterize the underlying mathematical structure, classify all such obstructions
Metlitski-Kane-Fisher, 1302.6535; Burnell-Chen-Fidkowski-Vishwanath, 1302.7072 ]



Ideas about

regularizing the Standard Model



Nielsen-Ninomiya result on fermion doubling

The most famous example of such an obstruction was articulated
by Nielsen and Ninomiya:

It is not possible to regulate free fermions while preserving the
chiral symmetry.



Recasting the NN result as a statement about SPT states

Consider free massive relativistic fermions in

4+1 dimensions (with conserved U(1)):

S =

∫
d4+1xΨ̄ (/∂ + m) Ψ

±m label distinct Lorentz-invariant

(P-broken) phases.

One proof of this:

Couple to external gauge field

∆S =
∫
d5xAµΨ̄γµΨ.

log

∫
[DΨ]e iS4+1[Ψ,A] ∝ m

|m|

∫
A∧F∧F

Domain wall between them
hosts (exponentially-localized)

3+1 chiral fermions: [Jackiw-Rebbi,

Callan-Harvey, Kaplan...]

Galling fact: if we want the extra dimension to be finite, there’s another

domain wall with the antichiral fermions.

And if we put it too far away, the KK gauge bosons are too light...



Loophole in NN theorem
But the SM gauge group is not anomalous, shouldn’t need extra dimensions.

Loophole: Interactions between fermions!

Old idea: add four-fermion interactions

(or couplings to other fields) which gap the

mirror fermions, but not the SM, and

preserve the SM gauge group G.

These interactions should explicitly break all

anomalous symmetries.

This requires a right-handed neutrino. [Preskill-Eichten 1986]:
SU(5) and SO(10) lattice GUTs. [Many other papers ... recent work: Wen, J. Wang]

[Preskill-Eichten 1986]: Evidence for mirror-fermion mass generation without

symmetry-breaking via eucl. strong coupling expansion.

[Geidt-Chen-Poppitz]: numerical evidence for troubles of a related proposal in 1+1d.



New evidence for a special role of nF = 16 · n
Collapse of free-fermion classification:
Dimensional recursion strategy [Wang-Senthil, Qi, Ryu-Yao, Wen, You-BenTov-Xu]:

1. Consider neighboring phase where G is spontaneously broken 〈φ〉 6= 0.

2. Proliferate defects of φ to reach paramagnetic phase.

3. Must φ-defects carry quantum numbers which make the paramagnet

nontrivial?

Initial step: [Fidkowski-Kitaev]

edge of 8× majorana chain is

symmetrically gappable.

same refermionization as shows

equivalence of GS and RNS

superstrings, SO(8) triality.

[You-BenTov-Xu]: In 4+1d, with many G, the collapse again
happens at k = 8 ' 0 (→ 16 Weyl fermions per domain wall.)

awkward:

G ⊃ ZT2
Conclusion: This novel strategy for identifying obstructions to gapping the

mirror fermions shows none when nF = 16n.



Surface-only electrodynamics,
by example



Strategy

Study a simple (unitary) gapped or topological field theory in 4+1
dimensions without topological order, with symmetry G.

Consider the model on the disk with G-inv’t boundary conditions.

The resulting edge theory is
a “surface-only theory with respect to G”
– it cannot be regulated by a local 3 + 1-dim’l model while preserving G.

This is the 4+1d analog of the “K-matrix approach” to 2+1d
SPTs of [Lu-Vishwanath 12].



What does it mean to be a surface-only state?

These theories are perfectly consistent and unitary – they can be realized as

the edge theory of some gapped bulk. They just can’t be regularized in a local

way consistent with the symmetries – without the bulk.

1. It (probably) means these QFTs will not be found as
low-energy EFTs of solids or in cold atom lattice simulations.

2. Why ‘probably’? This perspective does not rule out emergent
(“accidental”) symmetries, not explicitly preserved in the UV.

3. It also does not rule out symmetric UV completions that
include gravity, or decoupling limits of gravity/string theory.



Some known examples of surface-only states
The first three examples are in D = 2 + 1, realized on the surface of D = 3 + 1

boson SPTs protected by time-reversal:

I Non-linear sigma model on S2 with Hopf term at θ = π

Z =
∑

instanton number, n

(−1)nZn

[model of high-Tc : Dzyaloshinskii-Polyakov-Wiegmann 88, surface only: Vishwanath-Senthil 12]

I “Algebraic vortex liquid”: an insulating state of bosons (or a
paramagnet) with massless fermionic vortices
[proposed by Fisher et al 06, surface only: Wang-Senthil 13]

I “All-fermion toric code”: a version of Z2 gauge theory where
e,m, ε ≡ em are all fermions.
[surface only: Burnell-Chen-Fidkowski-Vishwanath, Wang-Senthil]

I “All-fermion electrodynamics”: a version of Maxwell theory
where e,m, ε ≡ em are all fermions.
In D = 3 + 1, with G = 1 [surface only: Wang-Potter-Senthil 13]



A simple topological field theory in 4+1 dimensions
Consider 2-forms BMN in 4 + 1 dimensions, with action

S [B] =
KIJ

2π

∫
IR×Σ

B I ∧ dBJ

In 4`+ 1 dims, K is a skew-symmetric integer 2NB × 2NB matrix.
Note: B ∧ dB = 1

2
d(B ∧ B).

Independent of choice of metric on IR× Σ2p.

Related models studied in: [Horowitz 1989, Blau et al 1989, Witten 1998,

Maldacena-Moore-Seiberg 2001, Belov-Moore 2005, Hartnoll 2006]

[Horowitz-Srednicki]: coupling to string sources ∆S =
∫

ΓI
B I

computes linking # of conjugate species of worldsheets ΓI .

Simplest case (NB = 1) is realized in IIB strings on AdS5 × S5,
B ≡ BNSNS ,C ≡ CRR :

SIIB 3
1

2π

∫
AdS5×S5

F
(5)
RR ∧ B ∧ dC =

N

2π

∫
IR×Σ

B ∧ dC

Crucial hint: Type IIB S-duality acts by B ↔ C .



Strategy

1. Solve the model – when is it an EFT for an SPT state?
Answer: when PfaffK = 1.

2. Identify the edge states, and the symmetry G protecting them.
(Whatever we get is surface-only with respect to G.)

Answer: in the simplest realization, the edge theory is ordinary Maxwell

theory, but with manifest electric-magnetic duality (~E , ~B)→ (~B,−~E).

Comments:
1. Breaking Lorentz symm. is not enough to allow this symmetry:

the edge theory we find is exactly the manifestly-duality-invariant model

of [Schwarz-Sen 94].

2. Corollary: it is not possible to gauge electric-magnetic duality
symmetry.
∃ recent literature with continuum arguments for this impossibility:

[Deser 1012.5109, Bunster 1101.3927, Saa 1101.6064]

3. A similar construction in 6+1 dimensions produces a sector of
the infamous (2, 0) SCFT on the edge.



All-fermion electrodynamics
So far, we’ve discussed ‘pure’ U(1) gauge theory (free).

A stronger obstruction can be found by adding matter

(Ends of strings are electric and magnetic charges)

Manifest duality symmetry
=⇒ e,m and dyon ε ≡ em

must have the same statistics.

(
qe
qm

)
→
(
a b
c d

)
︸ ︷︷ ︸
∈SL(2,Z)

(
qe
qm

)

• If e,m are bosons, ε is a fermion!
‘spin from isospin’: [Jackiw-Rebbi]

ψ(x1, x2) = e iϕψ(x2, x1)

ϕ = e

∫ π

0

dϕAϕ(θ =
π

2
, ϕ)︸ ︷︷ ︸

Dirac monopole field

Dirac
= π

• All fermions is self-consistent......BUT
[Wang-Potter-Senthil] the all-fermion electrodynamics is not ‘edgeable’:
on a space with boundary there is a unit-charge boson operator.
(Important assumption: no gauge invariant fermion operators on HUV .)



All-fermion electrodynamics

This is evidence for a 4+1d SPT
with no symmetry (analogous to Kitaev’s E8 state).
[work in progress:] Coupled-layer construction

following [Wang-Senthil] for all-fermion TC

produces trivial bosonic bulk, correct edge.

Idea: ‘dyon string condensation’ (like [Metlitski-Kane-Fisher])
• Each layer is ordinary electrodynamics with bosonic charges.
• bi ≡ ε†i mi+1εi+2 are mutually-local bosons.
• Condensing bi (obliquely) confines ai+1, i + 1 = 2...N − 1.
• At top layer: m1ε2, ε

†
1m1ε2, ε

†
1 survive, are fermions,

are electron, monopole & dyon of U(1)odd.

∃ a 4+1d local lattice model which realizes this construction.

In the bulk, continuum: this is the BdC theory with gapped string
matter.



Like ‘deconstruction’:

=

=



Dyon string condensation
If we did this: −→
∆H = V

∑
i (|b̃i |2 − v2)2, b̃i ≡ e†i ei+2 = ve iai,i+2

would higgs
∏

i U(1)i → U(1)even × U(1)odd.

4 + 1d Maxwell theory with G = U(1)even ×U(1)odd, bulk photons.
Can dualize to 2-form potentials: f o/e = dao/e = ?dC o/e

S =
∑
α=o,e

∫
5d

(
1

g 2
α

dCα ∧ ?dCα + Cα ∧ ?jαm
)
.

Magnetic flux tubes of broken U(1)s collimate monopoles into

monopole strings of 5d Maxwell.

If instead we do this : −→
bi ≡ ε†imi+1εi+2 are mutually-local bosons.
∆H = V

∑
i (|bi |

2 − v 2)2. Condensing bi (obliquely) confines

ai+1, i + 1 = 2...N − 1.

Binds monopole strings of ae/o to electric flux lines of ao/e !

This is the effect of the additional term

∆S =

∫
1

4π
C e ∧ dC o .



A solvable coupled-island
construction of SPT states in 2 + 1

dimensions



An SPT machine

A lot of effort has been put into classifying SPT states.

Fewer explicit constructions exist.

Useful e.g. for understanding the phase transitions between them, and the

topologically-ordered states that result upon gauging (subgroups of) G.

Here: 2+1d ZN paramagnets.

Virtues of our construction:

I Translation invariance not required. (Often translation invariance

can protect an otherwise unprotected edge.)

I Uniform construction of domain wall operators.
→ [Levin-Gu] braiding statistics proof of nontriviality

I Illuminates connections between the few existing examples:
[Levin-Gu (Z2), Chen-Liu-Wen (Z2), Chen-Gu-Liu-Wen (mysterious general formula?)]

I The ‘duality’ method of [Levin-Gu] was not available: gauging the

bulk symmetry provides a (simpler?) construction of recent ‘generalized

string-net models’ [Lin-Levin].



Non-onsite symmetry
An anomalous symmetry can be
realized in a lattice model if it is not
on-site: its action on one site
depends on others.
This means you can’t gauge it just by

coupling to link variables (without

coarse-graining first).

(Like chiral symmetry with

staggered fermions.)

For example, at the edge of the Levin-Gu Z2 paramagnet,

S =
∏
J

XJ

∏
J

i
1
2

(1−ZJZJ+1) =
∏
J

XJ · inumber of domain walls

A non-onsite symmetry S is nontrivial if S 6= U
∏

j sjU
†

with U a local symmetric unitary (unitary evolution by a symmetric H).

How to tell?? We will find a practical criterion below.

Focus on ZN spins at each site:

XZ = ωZX, ω ≡ e
2πi
N Z|n〉 = ωn|n〉, .

Pn(Z) ≡ |n〉〈n|, X|n〉 = |n − 1〉, n = 0..N − 1 (mod N)



An SPT machine

Given desired action of
non-onsite symmetry on edge:

Think of each bag as a site.
Couple together ‘bags’:

(Inspired by CZX model for Z2 [Chen-Liu-Wen, Swingle].)

HCZX = −
∑
�

b� + h.c .

b� ≡ XXXXP. [b�,b�′ ] = 0

|gs〉 =
∏
�

1√
N

N−1∑
n=0

|nnnn〉



Symmetry-protected edge states
Note: H doesn’t know about p; S does: ( [S,HCZX] = 0)

S =
∏
j

Xj

∏
bags

∏
j

Cp (Zj ,Zj+1)


Not onsite on edge: −→

Rough edge realizes the
desired S on edge modes: p N-p N-p N-pp p

p p p

Claim of robustness: perturbing HCZX by terms respecting S, you cannot
remove this edge stuff.

i.e. no local, symmetric unitary can make |gs〉edge a product state. (Gapless or

symmetry-breaking degeneracy.)

Shortcoming (?): requires bipartite graph of connections between bags.

Note: I draw lattices for simplicity of drawing, but translation invariance is not

at all necessary.



Bag link phases S =
∏
j

Xj

∏
bags

∏
j

Cp (Zj ,Zj+1)

Wanted: A unitary operator C(1, 2) ≡ C(Z1,Z2) on two ZN -valued variables

which satisfies the following three simple-looking conditions:

• group law : SN =
∏
j

(
Z†jZj+1

)p
only for closed loops: = 1

• gappability : Cp(1, 2)C−p(1, 2) = 1 =

• non-triviality
(
flux braiding

)
:

X k1
1 C k2

p (12)X−k2
1

C k2
p (12)

X k1
3 C k2
−p(23)X−k1

3

C k2
−p(23)

?
= e2πi 2p

N
k1k2 .



A uniform construction of domain-wall operators

W (R) ≡ ∏
j∈R\last col

Xj

∏
bags in R

P

·
∏

j∈bag
Cp(Zj ,Zj+1)

Acts like S in the interior of R.

Threads 2π/N-flux along its boundary.

Becomes the string operator in the

topologically-ordered model with G gauged

and deconfined.

Same C !
Solution of conditions 1-3:

C (Z1,Z2) = e
2πip

N2

∑
n nPn(Z†1Z2) .

For N = 2, 3, this object appears in [Wang-Santos].



Braiding of flux insertions
[Levin-Gu]

WR generate symmetries:

[H,WR ] = 0 .

If domain walls intersect once:

Wk1
R1
Wk2

R2
= e2πik1k2

2p

N2 Wk2
R2
Wk1

R1

(annoying fine print:

this formula works for k1k2 ∝ N)

This must be represented on
groundstates
(in fact, the whole spectrum)

=⇒ nontrivial edge spectrum.



Braiding of flux insertions

WR generate symmetries:

[H,WR ] = 0 .

If domain walls intersect once:

Wk1
R1
Wk2

R2
= e2πik1k2

2p

N2 Wk2
R2
Wk1

R1

(annoying fine print:

this formula works for k1k2 ∝ N)

This must be represented on
groundstates
(in fact, the whole spectrum)

=⇒ nontrivial edge spectrum.

This gives a very practical condition for

nontriviality of C .



Coarse-graining transformation
step 1: change basis to on-site symmetry:

US1U
† =

∏
j

Xj (U known but, so far, ugly.)

Weirdness of U: it’s a local unitary, but not continuously connected to 1 by

local symmetric unitaries.

In this basis, easy to gauge. Alternative[Swingle]: diagonalize action on bags.

step 2:project to low-energy hilbert space = ZN spins on sites J of bag graph:

H = −
∑
J

XJuJ(Z) + h.c .

|gs〉 = U⊗J (
∑
n

1√
N
|n〉J)

like [Levin-Gu] for Z2

should be interpreted in terms of

fluctuating domain walls and

junctions.



Non-onsite edge symmetry revisited

Chern-Simons description [Lu-Vishwanath]:
Edge is non-chiral boson, only the left-mover carries the ZN .

On the lattice, again the
action is by duality:
S1 exchanges the Jordan-Wigner

(para)fermions for the spins with the

JW (para)fermions for the disorder

operators.

Symmetric edge Hamiltonian for ZN :

H = −
∑
J

(
XJ + Zp

J−1XJZ
p
J+1

)
+ h.c .

JW solution for Z2: Always in ferromagnetic (topological) phase.

For ZN : Likely a simple lattice model for scalar with chiral ZN symmetry.



Interesting generalizations
G = ZN × ZN : ∃ a qualitatively different form of cocycle,

related to a CS term of the form a ∧ db rather than a ∧ da.

Coupled island construction:
introduce two sets of ZN variables at each site of a CZX lattice, X,Z, X̃, Z̃.

ZN × ZN : S =
∏
j

Xj

∏
bags

C (Z̃), S̃ =
∏
j

X̃j

∏
bags

C (Z).

WR1W̃R2 = ω
p
N W̃R2WR1

(
WR1WR2 = WR2WR1 , W̃R1W̃R2 = W̃R2W̃R1

)
U(1): our original goal was to make a solvable model of the boson integer

quantum Hall state [Levin-Senthil, Senthil-Regnault, Barkeshli].
A rotor at each site:

[n, e iθ] = e iθ, X(ϕ)j ≡ e iϕnj ,Z = e iθ, X(ϕ)ZX†(ϕ) = e iϕZ.

b� =

∫ 2π

0
d̄θX(θ)X(θ)X(θ)X(θ)P

Cp(1, 2) = e ip
∫ 2π

0 d̄θθPθ(Z†1Z2)



Questions

I For G = U(1), gauging the symmetry produces a model with
cL 6= cR , but the model should still be solvable.
Some tension with theorems of [Kitaev, honeycomb paper; Lin-Levin].

I We have not yet made precise the connection to group
cohomology.
The condition on the link phases that the DW commutator is a c-number

should be the cocycle condition. Is it?

I Origin of bipartite restriction?!?
In the continuum, there is no difference between p → −p and orientation

reversal.

I Non-abelian G?

I 3d?

I What is anomalous about the all-fermion electrodynamics?



Concluding remark

Clearly the fruitful exchange of ideas between high energy theory
and condensed matter theory continues.



The end

Thanks for listening.



Lattice model for the BdC theory [Kravec, JM, Swingle, in progress]

• Put rotors e ibp on the plaquettes p of a 4d

spatial lattice.

e ibp |np〉 = |np + 1〉.

• Put charge-k bosons Φ` = Φ†−` on the links `.

[Φ`,Φ
†
`] = 1

[Wegner, ..., Motrunich-Senthil,

Levin-Wen, Walker-Wang, Burnell et al]

np ≡ # of ‘sheets’ covering the

plaquette.

Φ†` creates a string segment.

Φ†`Φ` ≡ # of strings covering the

link.

H = −
∑

links,`∈∆1

(
∑

p∈s(`)

np − kΦ†`Φ`)
2

︸ ︷︷ ︸
H1,

gauss law. happy when sheets close,
or end on strings

−
∑

volumes, v∈∆3

∏
p∈∂v

e ibp + h.c .︸ ︷︷ ︸
H3∼B2, makes sheets hop.

− Γ
∑
p∈∆2

n2
p︸ ︷︷ ︸

H2∼ E2. discourages sheets.

− t
∑
p∈∆2

e ikbp
∏
`∈∂p

Φ†` + h.c .︸ ︷︷ ︸
Hstrings, hopping term for matter strings

+V
(
|Φ|2

)

When Γ = 0,V = 0, the model is solvable:

Soup of oriented closed 2d sheets, groups of k can end on strings.



Lattice boson model, cont’d

Condense Φ` = ve ia` : Hstrings = −
∑

p tv
4 cos

(
kbp −

∑
`∈∂p a`

)
=⇒

(
e ibp
)k

= 1, |np〉 ' |np + k〉.
Leaves behind k species of (unoriented) sheets.

Groundstate(s): equal-superposition sheet soup. kb2 sectors for

I = 1.



Continuum limit.

U(1)
Higgs→ Zk 2-form gauge theory: (subscripts indicate form degree)

L =
tv4

2
(da1 + kB2) ∧ ? (da1 + kB2) +

1

g2
dB2 ∧ ?dB2

path integral
manipulations

' k

2π
B ∧ dC +

1

8πtv4
dC ∧ ?dC +

1

g2
dB ∧ ?dB︸ ︷︷ ︸

irrelevant perturbation, ignore when E < tv 4, g

with dC ' 2πtv 4 ? (dϕ+ kB).

[Maldacena-Moore-Seiberg hep-th/0108152, Hansson-Oganesyan-Sondhi cond-mat/0404327]


