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Why study topological strings?

• They compute F-terms in superstring effective actions.

They organize (holomorphic and UV soft terms for) 4d,N = 1 string

vacua.

• They count BPS states.

• They provide a toy model for defining physical strings.

• How is it that the Kodaira-Spencer theory exists?

• Ztop is a wavefunction.

in what Hilbert space, with what Hamiltonian?



Today

Using the ”melting crystal”, I’m going to try to formulate a UV

completion of the Kodaira-Spencer theory

for some Calabi-Yau backgrounds:

A local two-dimensional lattice model

in a background field related to the choice of CY.



Facts from the topological string

The closed B-model is a theory of complex structure deformations

(”Kodaira-Spencer theory”), i.e. of Ω ∈ H(3,0).

On CY of the form A1 singularity over Riemann surface

zy = F (u, v)

(This class of CYs is mirror to noncompact toric CY.)

the B-model can be described by a ”locally-free” chiral boson

at the free-fermion radius (i.e. or weyl fermion) (in a fixed conformal frame)

on a non-commutative space – the embedding coordinates u, v of the RS are

canonically conjugate [X,P ] = igs. (Aganagic-Dijkgraaf-Klemm-Mariño-Vafa)

The boson determines the complex structure of the space on which it

lives.

∂ϕ =

∫

S2

Ω



The fermion operator at (u, v) inserts a D-brane wrapping z = 0 or

x = 0.

The KS theory has many gauge symmetries A→ A+ ∂̄ξ, and

confusing issues about normalizability of modes.



melting crystal

topological A model on |C3

Zclosed(q = e−gs) = e

∑

g=0
g2g−2

s Fg 'M(q)

(BCOV, Faber-Pandharipande, Gopakumar-Vafa, Mariño-Moore) with

M(q) =
∏∞
n=1(1 − qn)−n

M(q) =
∑

π

q|π|.

(Okounkov-Reshetikhin-Vafa)



• This picture can be overlaid on the toric diagram for |C3
.

the three directions are |zi|
2.

The sum has an interpretation as a sum over blow-ups

(Maulik-Nekrasov-Okounkov-Pandharipande, Iqbal-Nekrasov-Okounkov-Vafa).

• The choice of origin isn’t special (like constant B-field).

• The topological A-model on |C3
requires some choice of boundary

conditions at ∞.



Including (lagrangian) branes with U(∞) representations attached −→
topological vertex (Aganagic-Klemm-Mariño-Vafa)

CR1R2R3 = Z−1
∑

π∈S(R1R2R3)

q|π|−|πR1R2R3 |

where S(R1R2R3) is the set of tableaux which asymptote to Ri on

the xi axis, and πR1R2R3 is the smallest such tableau.

• There is a scaling limit shape (Kenyon, Okounkov):

If we assign size gs to the boxes, at gs → 0 there is a limit shape

which dominates the sum

which is the mirror B-model curve

{eu + e−v − 1 = 0} ⊂ {eu + e−v − 1 = xy}.



• Most importantly for me, there is a correspondence between

a. 3d tableaux π

b. lozenge tilings of triangular lattice

(lozenge = two triangles sharing an edge)

c. dimer coverings of the dual hexagonal latttice



(a dimer covering is a pairing of adjacent vertices, so that every vertex is covered

once.)

The b-c correspondence is: each lozenge contains a dimer. (b-c is bijective)



empty room

tableaux map to dimer and lozenge coverings which asymptote to the ’empty

room’:



Review of solution of uniform dimer model

(Temperley, Kasteleyn, Fisher, Stephenson, 1960)

N
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Z(zx, zy) =
∑

C

znx(C)
x zny(C)

y

(nx,y are the number of horizontal/vertical dimers in the covering C)

Claim:

Z = Pf D(zx, zy)



D is MN ×MN .

D = zx1 ⊗ J + izyJ ⊗ 1

The first entry in the tensor product is the M ×M row-space and the second is

the N ×N column space. J is the near-neighbor hopping matrix:

J =







0 1 0 0 0...

−1 0 0 0 0...

0 0 0 1 ...

0 0 −1 0 ...







Basic idea: Nonzero entries in D correspond to links in the lattice.

terms in the pfaffian correspond to dimer coverings.

Pf D =
1

2nn!

∑

σ∈Sn

(−1)σDσ1σ2Dσ3σ4 . . .Dσn−1σn

the is are chosen so all coverings come with weight 1 (times zx...).

Show that all come with same sign by comparing coverings related

by allowed flips:



j=1
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k=1
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i −i
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(1,3) (2,2)

σ

If the graph is bipartite (Made of two sublattices (white and black), vertices

in each of which only touch vertices of the other.)

D =

(

0 D◦•
D•◦ 0

)

.

More generally, the i multiplying the vertical dimers is replaced by

the direction in the complex plane in which the edge points.

For the honeycomb lattice, ω3 = 1

D•◦ = q∂x + ωq
1
2 (∂x+

√
3∂y) + ω2q

1
2 (∂x−

√
3∂y),

D◦• = −q−∂x − ω2q−
1
2 (∂x+

√
3∂y) − ωq−

1
2 (∂x−

√
3∂y).



The important point

D is a latticization of a CHIRAL DIRAC OPERATOR!
i

−i

−1

1

Pf D =

∫

∏

sites,v

dψv e

∑

v,v′ ψDψ

ψ are real Grassmans at every site of the lattice.

This is a latticization of a Euclidean path integral

over a free 2d fermion field.

There is a Z2 gauge symmetry in this system:

ψr → εrψr, εr = ±1.



Solution

The eigenvalues of a matrix

A = X ⊗ 1 + 1 ⊗ Y

are of the form λx + λy, and the eigenvectors are just tensor

products of the eigenvectors of X,Y :

Ajj′;kk′v
x
j′v

y
k′ = (λx + λy)v

x
j v

y
k .

Z2 = detA(q = 1) =
∏

x,y

(zxλx + izyλy)

λx,y are the eigenvalues of the respective matrices

X,Y ∝ J have waves as eigenfunctions

λx,y are Mth and Nth roots of unity.



dimer weights

So far, q = 1.

3d tableaux ↔ dimer coverings

q|π| ↔ ?

Honeycomb lattice is bipartite.=⇒ Dimers can be oriented.

Two dimer configurations on a bipartite lattice form a collection of

oriented closed loops.

(detA = (Pf A)2, the determinant counts loops, the pfaffian counts dimers)



How to count boxes with dimers

The number of boxes in a tableau is measured with respect to a

reference configuration, the empty room.

The blue dimers are the empty-room tiling; on these the arrows go

from black vertices to white.



How to count boxes with dimers

Def: A difference of two dimer coverings (π1, π2) is the set of oriented

loops formed by superposing them with opposite arrow conventions.

The red dimers describe a particular 3d tableau X.

arrows go from white to black



How to count boxes with dimers

Number of boxes in X = total area inside the loops

(each plaquette counts for one unit of area).

Loops within other loops correspond to boxes which obscure one

another.

This tableau contains 17 = 16 + 1 boxes.



q 6= 1

So far, we’ve seen what |π| is in terms of dimers. How do we modify

the spin system to include this weight?

Answer: Deform the Dirac operator by the connection for a constant

background magnetic field:

Area(L) ×B =

∫

area

F =

∮

L

dsµAµ

So those loops are Wilson loops.

The strength of the field is e

∫

Σ
F

= q for each plaquette Σ.

One gauge choice for this is (square lattice):

like Ax = 0, Ay = Bx gauge

D•◦
jk;j′k′(q) = iδjj′Jkk′ + qk/2Jjj′δkk′

The background gauge field depends on the empty room.
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Fermion doubling?

The Kasteleyn matrix is now of the form

D =

(

0 D•◦(q)

D◦•(q−1) 0

)

Not antisymmetric, no pfaffian.

ψDψ depends only on the antisymmetric part of D.

This would be fixed by complexifying the Grassmanns

∫

d2ψ•d
2ψ◦ e

ψ†Dψ = detD = |Ztop|2

But actually it is possible to study just the chiral part

detD•◦ =

∫

dψ•dψ◦ e
ψ•D•◦(q)ψ◦



Bosonization
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Local rules define the height function of a dimer covering:

Going around black verties counterclockwise the height variable increases when

it doesn’t cross a dimer; it jumps down by two when it crosses a dimer. The

direction of increase is reversed around a white vertex.

This height variable is the height of the stack of boxes.

An uncovered site is a vortex for the height variable.



Observables

What are the observables of this system?

Monomer and dimer correlators

Simplest:

〈ψrψr+e〉 = Z−1

∫

dψ e−Sψrψr+e

removes terms where ψr and ψr+e are pulled down from S.

This is the probability of having a dimer on edge e

The correlations are gaussian

〈ψ1...ψ2k〉 = PfrsKrs

with Kr,s = 〈ψrψs〉. This is the inverse of the magnetic Kasteleyn matrix.

Dr,sKs,r′ = δr,r′



A thing I think is true:

The kernel introduced by Okounkov and Reshetikhin

Kr,s =

∫

dz

z

∫

dw

w

√
zw

z − w
zhrw−hsΦ3D(z, tr)Φ

−1
3D(w, ts)

Φ3D(z, t) =

∏∞
m=1(1 − z−1qm)
∏∞
m=t(1 − zqm)

, (t ≥ 0),

Φ3D(z, t) =

∏∞
m=−t(1 − z−1qm)
∏∞
m=1(1 − zqm)

, (t < 0),

(h, t) = (z − (x+ y)/2, x− y) satisfies this equation.



Classical limit

q = e−gs → 1, with lattice spacing gs.

Correlators are dominated by a saddle point (limit shape).

Local fluctuations of the height variable around this saddle point are

gaussian. (Cohn-Kenyon-Propp, Kenyon, Kenyon-Okounkov)

The height variable determines the complex structure of the graph of

the limit shape.

The height variable represents the same degree of freedom as the KS

field.



What if you remove a spin?

If you look at Fisher and Stephenson (1963) where they calculate the

monomer 2-point function (in the uniform dimer model), you see them

introduce a Z2 wilson line in between the monomers

to keep the dimer coverings all contributing with the same sign.

ψ◦(r)
k
∏

i=0

σr+ei,r+ei+1
ψ•
r+ek

With the q-weight...?

Different choices of route for this line differ by some closed loop C

in the magnetized model, the ratio is qA(C).

This is related to the fact that the height variable isn’t well-defined

near the monomer (it’s a vortex).











The separated monomers make an Escher staircase in the melting

crystal.

By going up two steps and down three you can end up at the same

height.



In this configuration you can go down without going up at all.



Intermediate steps in the calculation of dimer correlators involve

these objects.



a word about D-branes

σe ∼ e
ψr−(e)ψr+(e)q

f(e)

Ψ(r) ∼
(

r
∏

e

σe

)

ψr

Z(r) = Z−1〈Ψr〉

(Saulina-Vafa; Dijkgraaf-Sinkovics-Temurhan):

Z((0, a)) =

∞
∏

n=1

(1 − qa+n)

in the (h, t) coords above

Matches the string answer more or less.



Extension

The fermion description suggests a nonperturbative formulation of

the topological string for other empty-room configurations.

For more general lattices, a nice characterization of ’empty room’

configurations is that they have very few flippable plaquettes.

This lattice model can be formulated on any bipartite lattice.

Even nonplanar ones (like for CYs with no global torus action)

this requires picking holonomies of A around the one-cycles.

(and might be a little hard to solve.)



Universality

Clearly features of the scaling limit are universal.

What about before the asymptotic expansion in gs?

e.g. 2d YM (Migdal), 3d lattice CS (Ooguri) are subdivision invariant.

Already at the continuum theory with finite lattice spacing.

Or: some dynamical mechanism for arrangement of lattice?

(chemistry)

Or: many nonperturbative definitions.



On the discretization of space

So possibly, the KS theory (a 6d gauge theory) exists in the UV

because it’s a lattice model.

It is tempting to extrapolate this short-distance completion to

superstrings.

Stringy spacetime is made of little tetrahedrons, and this is why it’s UV finite.

But:

topological string = H?(superstring)

BPS constraints on phase space −→ noncommutative structure of

space (Das-Jevicki-Mathur, Lin-Lunin-Maldacena, Mandal, Ooguri-Vafa-Verlinde)

BPS branes act like free fermions.

and BPS backgrounds can be described as a many-fermion ground

state.



Replication

Chiral fermions on the lattice cry out for fermion doubling.

−→ |Ztop|2?

There is an interesting class of models with Ns at • sites, N̄s at ◦
sites.

The connection can be made nonabelian.
∫

dNψ•dNψ◦ eψ
†D(A)ψ = eSCS(A)

discrete Polyakov-Wiegmann formula.



Escape from two dimensions

Q: States of a 2d free fermion are labelled by young tableaux.

Whose states are labelled by 3d tableaux ?

A: The model obtained by adding an extra time direction.
∫
∏

dψ −→
∫
∏

[dψ(t)]

it’s an antiferromagnetic spin system:

”quantum dimer model” (Rokhsar-Kivelson), a model of resonating valence

bonds.

Its vacuum correlations are computed by the classical dimer model.

This is the same operation we perform to get ”topological M-theory”

a mysterious 7d theory whose ground states are CY × S1,

excited states are more general G2 manifolds



The end


