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For this talk: FQHE ≡ interesting.

It provides experimental realizations of:

I fractionalization in dim > 1

I topological order (in the Wen sense)

I emergent gauge theory

I topological field theory

I a relatively well-controlled non-Fermi liquid.
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Parton construction as duality

...between a model of interacting electrons (or spins or bosons or ...)

and a gauge theory of (candidate) ‘partons’ or ‘slave particles’
(i.e. a guess for useful low-energy degrees of freedom).

The goal is to describe states in the same Hilbert space as the
original model, in terms of other (hopefully better!) variables.

Inevitable (?) for fractionalization of quantum numbers
(spin-charge separation, fractional charge ...) in d > 1 + 1

Makes possible:
• new mean field ansatze,
• candidate many-body groundstate
wavefunctions,
• low-energy effective theory,
• accounting of topological ground-state
degeneracy and edge states,

• transitions to nearby states.

Difficulties:
• making contact with

microscopic description,

• deciding fate of strongly

coupled gauge theories.
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Parton construction: step 1 of 2
[Jain, Wen ∼89]

1. Kinematics
Relabel states of
many-body H w/
auxiliary variables.
Not all states made by
f s are in H.

e.g . c = f1f2f3 =
1

3!
εαβγfαfβfγ

f s are complex fermion annihilation ops.

redundancy:

f1 → e iϕ(x)f1, f2 → e−iϕ(x)f2, f3 →
f3, ...
in fact, SU(3): fα → Uβα fβ , c → detUc

To write covariant action for f s, introduce gauge fields:

a0: aux variable imposing f †1 f1 = f †2 f2 = c†c = number of

e−; f †2 f2 = f †3 f3. ai : arise from e− bilinears

OR: demand ETCRs: 1 = {c, c†} = {f1f2f3, f
†

3 f †2 f †1 } modulo gauge
constraints.
Practical viewpoint: constructs possible wavefunctions.
guess weakly interacting partons: Hpartons = −

∑
ij tij f

†
i e iaij fj + h.c .

fill bands of f .

fluctuations of a?
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Parton construction: step 2 of 2
2. Dynamics
Such a rewrite is always possible, many possibilities.
Default result: the gauge theory confines at low energies.
That is: energy cost to separate partons � gap, (lattice spacing)−1,

chemistry.... =⇒ back to e−.

2+1d gauge theory likes to do this
(Maxwell or YM kinetic term is an irrelevant operator.)

[Polyakov 1976]: even compact U(1) gauge theory. ∂µσ ≡ εµνρ∂νaρ

monopoles =⇒ Veff = Λ3e iσ + h.c . =⇒ mass for σ, area law

Important point: it’s deconfined states of parton gauge theories
that are interesting.
Known exceptions which allow for this:

I partial Higgsing to ZZn.

I lots of charged d.o.f.s at low E

I in 2+1 : CS term a ∧ da is marginal, can gap out gauge
dynamics.
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e.g. FQHE in continuum, Laughlin states
Interacting e− −→
in 2+1 dims, in uniform B at

1

3
= νe ≡

Ne

NΦ(e)
=

Ne

eBA/(hc)

partial filling =⇒ if free, gapless.

f1f2f3, fα charge 1/3. each fα
in same B, suppose free.

νf =
Nf

NΦ(e/3)
=

Ne

NΦ(e/3)
= 3νe = 1

=⇒ gap!
SU(3) gauge field projects Hf to He−

integrate out gapped partons:

∫
[Df ] e i

∫
f †(∂+a)f = e i

k
2π

CS(a)

k = 1 =⇒ deconfined.
EFT is SU(3)1 CS theory with gapped fermionic quasiparticles ' U(1)3

Laughlin state. (Laughlin qp = hole in f with Wilson line)

Ψ = 〈0|
∏
i

c(ri )|Φmf 〉 =


N∏
ij

zije
−

∑N
i |zi |2/(4`2

B(e/3))

︸ ︷︷ ︸
ν = 1 Laughlin state with charge 1/3


3

σxy =
(e/3)2

h
× 3 =

1

e2/h
.
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Chern insulators

QHE is topological in two senses: σxy = p
q
e2

h p, q ∈ ZZ despite
(in fact because of) disorder.

IQHE: q = 1, happens for free electrons. p ∈ ZZ because of
topology of single-particle orbits (more in a moment).

FQHE: q > 1, requires interactions. q ∈ ZZ because of topology of
many-body wave function.
Electron fractionalizes: excitations have charge 1/q,
fractional statistics.



Chern insulators, continued
Although the effect was discovered in 2DEG in large B,
[Thouless, Haldane 80s]: for e− in a (tightbinding model of a) solid,
external B not necessary or meaningful.

Hkinetic =
∑
ij∈E

tijc
†
i cj + h.c.

=

∫
BZ

dk c†a(k)hab(k)cb(k) + h.c.

i , j label sites in a lattice with E = {edges}. c†i creates an e− at site i .

perhaps spin labels, omitted.

ca(k) =
∑

unit cells,~R

cie

i~k·(~R + ra)︸ ︷︷ ︸
site i 1/

√
area, a = 1..# of states per unit cell = # of bands ≡ N.

Tight-binding means that the set of paths is restricted to E , so
only the fluxes ∏

ij∈loop

tij =
∏

e i
∫ j
i A(x)dx

matter. Absorb these in phases in the hopping amplitudes.
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Why ‘Chern’?
BZ is a T d .
N sites/states per unit cell means a = 1..N number of bands.
if we double the unit cell (e.g. some modulation of the ts), we halve the BZ.

hab(k) : T d → {N × N matrices}

evals are band energies, evecs are sections of a rank N vector
bundle V no level crossing =⇒ V = ⊕N

a=1L
Natural (Berry) connection and curvature:

~Aa(k) ≡ −i〈a, k |~∇k |a, k〉, F = −i
∂

∂kx
Ay − i

∂

∂ky
Ax

N = 2 bands: Any hab = 1abd0(k) + ~d(k) · ~σab(k)

ε±(k) = d0 ±
√
~d · ~d . Bandgap ↔ |~d | > 0 ∀k.

F± = ±1

2
~d · (∂kx~d × ∂ky~d).

c1 =

∫
BZ
F = winding # of ~d : T 2 → IR3 − {0} ∼ S2 ∈ ZZ.



Chern insulators
Physics consequence [TKNN 82]: For a gapped system

σxy =
jx

E y
= lim

ω→0

〈jx jy 〉
iω

=
e2

h

∑
filled bands, a

c1(a)

• like QFT anomalies, the effect is indep. of the size of the band
gap, ∝ ∆

|∆| ,
comes from adiabatic motions, no instantaneous excitations req’d.

But: empty bands are required by the locality sum rule
∑

all bands, a c1(a) = 0.

• In effective action for B.G. gauge field∫
[dc] e iS[c]+i

∫
jµAµ ≡ e iSeff[A], j = charge current

Seff 3
∑

filled a c1(a)

4π

∫
spacetime

A ∧ F .

“Chern insulator” means c1 6= 0. An example of a topological insulator.
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Simplest topological lattice model

2d square lattice with uniform B with
∫

square B = 2π
N .

(Like Ax = 0,Ay = Bx gauge.) N →∞, a→ 0, lowest bands → LLs.

Partially fill (e.g. Ne = N/3). [context and refs: Roy, Sondhi Physics 4 36 (2011)]

Hint ∼ U
∑
〈ij〉

ninj + ...

Flat band means small U important in breaking degeneracy.
What state? c = f1f2f3?
[Vaezi]: Degeneracy of f s doesn’t care about charge.
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nth root of bandstructure

[JM-Swingle-Tran, Lu-Ran 11]

Each f should experience a phase
(
e i2π/N

)1/3
.

=⇒ Parton unit cell grows ×3, BZ shrinks /3.

NN
NNN
NNNN

Important ambiguity in cube root:

phases−→

In actual checkerboard model:
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More precisely: parton lattice gauge theory

Hparton gauge theory = −
∑
rr ′∈E

t frr ′f
†
r Vrr ′fr ′ + h.c .

+ h
∑
rr∈E

E 2
rr ′︸ ︷︷ ︸

el. flux costs energy

− K
∑
`∈L

tr
∏
rr ′∈`

Vrr ′ + h.c .︸ ︷︷ ︸
K > 0 forces smooth gauge configs

Vrr′ = e i
∫ r′
r a is raising op. for E : [E ,V ] = V

with gauge constraint:

h(divE )r + f †rαfrα = # of e− at r

Key point: strong coupling expansion works w/o confinement
because of CS term generated by the filled, gapped topological
parton bands. TKNN invariant = lattice CS coupling.

Ψcandidate = (slater det of filled parton bands)1/ν .

For what Helectron ?



Strong coupling expansion

Let h� K , |t f | (we’ll see that this is good.)

(Has a bad rep in particle physics since continuum limit is ebare = h→ 0. here

we don’t need to take this limit.)

At h→∞, color singlets win. Excitations are ”baryons” (= e−).
Big degeneracy between any arrangement of color singlets.

For h <∞,
hopping breaks
degeneracy:



electron hopping
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electron hopping



Hopping via strong coupling expansion

te = (t f )3/h2 including phases.

(hence the name.) In units of some particular te0 :

terr ′

te0
=

(
t frr ′

t f0

)3



electron-electron interactions



electron-electron interactions
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electron-electron interactions



ee interactions

• from parton exchange

short-ranged, ∼ Kt4
f /h4 � te , repulsive.

• ring exchange (from K) is smaller.

• parton exclusion force if two baryons are next to each other, they
block one virtual state that would have contributed to hopping.
=⇒ nn repulsion, U ∼ t2

f /h.

So: include bare e−e−

interaction to cancel the t2/h.
[Note: this is not fine-tuning from

the point of view of the electrons:

the hopping terms in He is also of

this order.]



nth root of bandstructure

• If parton fluxes are not uniform in enlarged cell, the e− wave
function isn’t translation invariant. (CDW and FQH).
We can find another wave function which is trans invariant by breaking the

SU(3) gauge symmetry:

h(k) =
3∑

colors,α=1

hαc†αcα, h2 ≡ T̂one subcellh
1, h3 ≡ T̂one subcellh

2

breaks SU(3)1 → U(1)2 × U(1)4, same physics.

Think of the parton band structure as variational parameters.
• If

∑
filled c1 > 0 we get non-abelian states. e.g. SU(3)2. this

happens.
in exact diagonalization: [D Sheng et al]

• Can make T-invariant examples by doubling.
• In 3d: no CS term. Easiest possibility for deconfinement is ZZn or
Sn phases.
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Other FQH states on the lattice

Composite fermion description is popular because of
phenomenology/numerology of GaAs.
Could be different for different microscopics (e.g. graphene, FCI).

Attempts to port composite fermion picture: Murthy-Shankar

[Other wavefunctions: X-L Qi, Qi-Barkeshli]

We know how to do parton construction on lattice now.
∃ parton constructions of all known FQH states.



Composite Fermi Liquid (brief review)

Interesting e.g. : e− at ν = 1/2. (spin polarized)

compressible composite Fermi liquid [Halperin-Lee-Read, ∼93]

L = f † (∂τ − ia0 − µ) f

+ − 1

2mb
f (∇− iA− ia)2 f

+
1

2

∫
r ′

Vrr ′nf (r)nf (r ′)

+
1

4π(2m)
εµνρaµ∂νaρ

ν = Ne
NΦ

= 1
2m

V (r) ∼ 1/rη can be long-ranged, if

no screening.

c(r) = M̂2m(r)f (r)

M̂ ≡ e iσ creates 2π flux of a.

Mean field ansatz: 〈a〉 = −A =⇒ f s see no B-field.

Lots of successful phenomenology.
Gauge fluctuations lead to non-Fermi liquid behavior:

• Cv ∼ T 2/3 or T logT depending on range of V (short or long (η = 1))

• Ge(r , t) exponentially decays in bulk, electronic quasiparticles short-lived.



Projective construction of HLR
c = fb

[MPA Fisher, Alicea et al 2009]

f electrically neutral,
charge +1 under a .

b electric charge 1,

charge -1 under a .

Hpartons =
∑
ij

tbijb
†
i e i(Aij+aij )bj + t fij f

†
i e−iaij fj + h.c .

− (µ− Ai
0)nb

i + ai0(nb
i − nf

i ) + Vijn
b
i nb

j .

Assume free partons. f s neutral, finite density → FL.
bs are bosons at ν = 1/2, can form Laughlin state:

b = d1d2, dα at ν = 1.

• a is very deconfined: Fermi surface and Chern-Simons term.
• Recover composite fermions: integrate out gapped ν = 1/2 boson qps,

producing a CS term for a, attaches 2 units of flux to f .

Below ν = 1/2 Laughlin gap: b = M̂2m.

• Ψ({r}) = 〈0|
∏
i

c(ri )|Φmf 〉 = PLLL

∏
i<j

z2
ij detije

i~ki ·~rj

 [Read-Rezayi]

• ∃ a similar story for any composite fermion state.



Remarks

1. lattice HLR:
”factorization of bandstructure” te = t f tb/h

Analog of parton charge assignment: put phases of te in tb.

2. Why this is progress:
• We can put it on the lattice.

• It repairs a gauge anomaly in CFL theory on g > 1 surfaces.

• The parton theory includes more dofs, can access nearby states.

3. Any incompressible boson ν = 1/2 state would give the same
outcome. =⇒ ∃ many HLR states.
Some of these states may have topological order in the sense of towers of

states which don’t mix. ”topological non-fermi liquid”.

4. In spite of boson gap, this state is compressible!
to add c, add f =⇒ 2 units of flux of a (gapless!) changes LL

degeneracy for b, can add b for free.
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Transitions out of FQH states
To realize FQH or FCI, we wanted :
bandwidth � interaction energy, Ue � gap between bands

Consider deforming the bands,
e.g. by applying pressure
(or applying a periodic potential to

the continuum FQH state)

eventually:

interaction energy, Ue � bandwidth � gap between bands

Expect conventional states:
insulator, Fermi liquid,
superfluid

Questions:

I Which of these transitions can be continuous?
I What are the resulting critical theories?
I Can anything else happen in between these extremes?
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Expect conventional states:
insulator, Fermi liquid,
superfluid

Questions:

I Which of these transitions can be continuous?
I What are the resulting critical theories?
I Can anything else happen in between these extremes?



Transitions out of topologically ordered states: preview

Bosons:

ν = 1/2 Laughlin FQH state
(topologically ordered state, no local

order parameter)

↔
Superfluid
(spontaneous symmetry breaking,

local order parameter)

Fermions:

(HLR) Composite Fermi Liquid
(non-Fermi liquid state with

emergent gauge symmetry and

emergent Fermi surface)

↔ Landau Fermi liquid
(conventional metal)

Previous work: Wen 2000, Barkeshli-Wen 2008

Wu-Wen, Chen-Fisher-Wu 1993



Bosons at half-filling

Required: an effective description in which we can interpolate.

b = d1d2

A state with nb(r) = 1 has nd1 (r) = 1 AND nd2 (r) = 1. This constraint is

imposed by a U(1) gauge symmetry under which d1,2 have opposite charge.

Mean-field states:

d1 fills a band with Chern number c1 = 1,
and

d2 fills a band with Chern number c2 = 1, 0,−1.

ln

∫
[Dd1Dd2]e iS[da,a] = ...+

c1 + c2

4π
i

∫
εµνρaµ∂νaρ.

[Wen-Wu, Chen-Fisher-Wu 93, Ran-Vishwanath-Lee 0806.2321, Barkeshli, JM]



Boson states at ν = 1/2
(c1, c2) = (1, 1) : U(1)2 CS theory. ν = 1/2 Laughlin FQH.

(c1, c2) = (1, 0) : U(1)1 CS theory. Mott insulator of b.

(c1, c2) = (0, 0) : gauge theory confines =⇒ ?

(c1, c2) = (1,−1) : This state is a superfluid (SF)! [Affleck-Harvey-Witten

82, Lee-Ran-Vishwanath 08, MB-JM 12, Lu-Lee 12, Grover-Vishwanath 12]

cheap argument: integrate out gapped ds:

Leff[a,A] =
1

2π
Aµ∂νaρεµνρ +

1

g 2
(∂a)2 integrate out A

' A2

better argument: compact U(1) gauge theory, no CS term.
flux of a carries electric charge, because of monopole fermion zeromodes.

[Polyakov, Unsal]: Veff ∼ Λ3e iσd1d2 + h.c . = Λ3e iσb + h.c.

=⇒ b condenses. Note: only e iσb appears.
The dual photon σ is the goldstone boson!
(For this gauge theory, Coulomb phase = Higgs phase!)

(And the partons are the SF vortices (fermionic).)
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A little more on ν = 1/2 states from partons
Consider (c1, c2) = (1,C ) and integrate out d1:

L[a, f2] = Lkinetic[a, f2] +
1

4π
εµνρaµ∂νaρ

b = M̂d2, where M̂ attaches 2π flux of a.

Couple to external EM field, integrate out d2 also:

L[a,A] = εµνρ
(

C + 1

4π
aµ∂νaρ +

C

4π
Aµ∂νAρ +

C

2π
Aµ∂νaρ

)
C = 1: gives correct σxy and topology-dependent degeneracies of

ν = 1/2 Laughlin.
C = 0: unique groundstate on all surfaces, σxy = 0, all excitations are bosons.

=⇒ Mott inslator.

Ψ =
∏
ij

zij︸︷︷︸
d1

zij︸︷︷︸
d2

=
∏
ij

zij︸︷︷︸
attach 1 flux unit

zij︸︷︷︸
CF︸ ︷︷ ︸

composite fermion picture

=
∏
ij

z2
ij︸︷︷︸

attach 2 flux units

· 1︸︷︷︸
〈φ〉6=0︸ ︷︷ ︸

composite boson picture

Composite boson picture of C = 0: 〈φ〉 = 0.



The critical theories

Chern-number-changing
transitions of the d
bandstructure. [above refs + Sachdev 98]

FQH-MI : (Nf , k) = (1, 3/2)
MI-SF : (Nf , k) = (1, 1/2)
FQH-SF : (Nf , k) = (2, 3/2)

LNf ,k =
Nf k

4π
εµνρaµ∂νaρ +

Nf∑
i=1

(
ψ̄iγ

µDµψi + mψ̄iψi

)
Direct FQH-SF transition requires two Dirac points.
Requires lattice symmetry (like in graphene).



n = 0

n = 1

C = 1

C = -1

E

Mott 
Insulator 

SuperfluidLaughlin
FQH

3D XY

m+(m  ,m  )=(0,0)+ -

|m | -

Boson Phase Diagram
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Chern insulators summary

Application of parton construction to fractional Chern insulators

Other FQH states on the lattice

Transitions out of topologically-ordered states

Application to topological non-Fermi liquids



Leverage this for electronic transitions

Boson sector −→

1. ν = 1/2 Laughlin FQH −→

2. Mott insulator −→

3. Superfluid −→

Electron state

1. HLR Composite Fermi liquid

2. Gapless Mott insulator
w/ emergent gauge field and FS

3. Landau Fermi liquid

Study transitions of e− system using the above boson transitions.
Generalizes [Senthil, 0804.1555]:
continuous Mott transitions between LFL and U(1) spin liquid.



Electron transitions

Claim: If we ignore the gauge fluctuations, the FS decouples from
the boson critical theory.
Direct b-f couplings: δL ∝

∫
k,q
Oqf

†
k fk−q where O is some operator from the

boson sector.

Particle-hole fluctuations of f s: v
∫
q
ω
|~q| |Oq|2

Leading contribution from O = |b|2. [Sachdev-Morinari 2002]

Conclusion:
v is irrelevant for MI-SF [Senthil 2008],
and for FQH-SF (Nf = 2).
For FQH-MI (Nf = 1), we won’t trust the 1/Nf expansion.
(Fermi surface shape deformations may allow continuous transition

[Nandkashore-Metlitski-Senthil 2012]. )
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Schematic phase diagram for composite FL
Gapless Mott 
Insulator 

Landau
Fermi Liquid

m+(m  ,m  )=(0,0)+ -

|m | -

Electron Phase Diagram

Composite 
Fermi liquid

• Direct transition from CFL to FL requires spatial symmetry.
Weirdly, this QCP between compressible states is incompressible.

If no lattice symmetry: exotic gapless Mott insulator phase intervenes.

Ioffe-Larkin formula:

Π−1
e = Π−1

b + Π−1
f =⇒

• Two crossover temperature scales.
• Resistivity jumps



CFL to FL, including gauge fluctuations

CFL -- FL

Landau FL
Composite FL

Marginal FL

T

T*

T**

m+

Quantum Critical
Non-Fermi Liquid

Marginal 
Composite FL



CFL to FL, including gauge fluctuations



CFL to gapless Mott Insulator

CFL -- GMI

Gapless Mott 
Insulator

Composite FL

Marginal ghost 
Fermi liquid

T

T*

T**

m+

Quantum Critical
Non-Fermi Liquid

Marginal 
Composite FL



CFL to gapless Mott Insulator



Pairing

Pairing of composite fermions leads to Moore-Read state, gapped.
In the presence of this pairing, critical theories are the boson ones!

Kitaev B Phase [Ising] 

p+ip
topological SC

m+(m  ,m  )=(0,0)+ -

|m | -

Electron Phase Diagram

v=1/2 MR
Pfaffian 
[Ising x U(1)]

[Transition from HLR to Moore-Read is very interesting and under study by Metlitski, Mross, Sachdev, Senthil]



Concluding comments, related to experiments

I Boson Mott-SF transition has been very well-studied. [Bloch, Greiner, ...]

With T -breaking perturbations (and some lattice symmetry)

bosons at half-filling can be pushed from SF to ν = 1/2 FQH
Laughlin via an exotic quantum critical point.

I Deformations of FQH states by periodic potential offers a new
route to a U(1) gapless ”orbital liquid” Mott insulator state.



The end.

Thanks for listening.
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