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This talk is about (examples of) obstructions to
symmetry-preserving regulators of QFT, in 3+1 dimensions.

Goal: understand such obstructions by thinking about certain
states of matter in one higher dimension with an energy gap
(i.e. E1 − Egs > 0 in thermodynamic limit).

More precisely: using their low-energy effective field theories
(topological field theories (TFTs) in D = 4 + 1).

These will be difficult states to access in the lab!

Strategy: use theories that obviously don’t exist1

to prove that certain slightly more reasonable-looking theories2

don’t exist even in principle3.

One possible outcome: Constraints on SUSY regulators.

1they live in D = 4 + 1
2they are 3+1 dimensional at least
3with some important disclaimers
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Realizations of symmetries in QFT and cond-mat

Basic Q: What are possible gapped phases of matter?

Def: Two gapped states are equivalent if
they are adiabatically connected
(varying the parameters in the H whose ground

state they are to get from one to the other,

without closing the energy gap).

One important distinguishing feature: how are the symmetries realized?

Landau distinction: characterize by broken symmetries
e.g. ferromagnet vs paramagnet, insulator vs SC.

X

Mod out by Landau: “What are possible (gapped) phases that
don’t break symmetries?” How do we distinguish them?

One (fancy) answer [Wen]: topological order.
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Topological order
3 intimately-connected features:

1. Fractionalization of symmetries (i.e. emergent

quasiparticle excitations carry quantum numbers

which are fractions of those of the constituents)

2. # of groundstates depends on the topology
of space.
connection to prev: pair-create qp-antiqp pair, move

them around a spatial cycle and re-annihilate. This

process maps one gs to another.

3. Requires long-range entanglement
[Kitaev-Preskill, Levin-Wen]:
S(A) ≡ −tr ρA logρA, the EE of the
subregion A in the state in question.

S(A) = Λ`(∂A)− γ (Λ =UV cutoff)

γ ≡ “topological entanglement entropy”
∝ log (#torus groundstates) ≥ 0.
(Deficit relative to area law.)

(e.g. FQH)

I e.g. quasiparticles are
anyons of charge e/k

I FxFy = FyFxe2πi/k

−→ kg groundstates.

I c.f.: For a state w/o LRE
S(A) =

∮
∂A

sd`
(local at bdy)
=
∮ (

Λ + bK + cK 2 + ...
)

= Λ`(∂A) + b̃ + c̃
`(∂A)

Pure state:
S(A) = S(Ā) =⇒ b = 0.

[Grover-Turner-Vishwanath]
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Mod out by Wen, too

“What are possible (gapped) phases that don’t break symmetries and don’t

have topological order?”

[nice review: Turner-Vishwanath, 1301.0330]

In the absence of topological order (‘SRE’, hence simpler),
another answer: Put the model on the space with boundary.

A gapped state of matter in d + 1 dimensions
with short-range entanglement

can be (at least partially) characterized (within some symmetry class of

hamiltonians) by (properties of) its edge states
(i.e. what happens at an interface with the vacuum,

or with another SRE state).

[Note: I am using the West-Coast definition of SRE

(vs deformable to product state by finite # of local unitaries) ]
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SRE states are characterized by their edge states

Idea: just like varying the Hamiltonian in time to another

phase requires closing the gap H = H1 + g(t)H2, so does

varying the Hamiltonian in space H = H1 + g(x)H2.

I Important role of SRE assumption: Here we are assuming that the

bulk state has short-ranged correlations, so that changes we might make

at the surface cannot have effects deep in the bulk.



SPT states

Def: An SPT state (symmetry-protected topological state),
protected by a symmetry group G is:
a SRE state, which is not adiabatically connected to a product state by local

hamiltonians preserving G .

e.g.: free fermion topological insulators in 3+1d, protected by U(1) and T ,

have an odd number of Dirac cones on the surface.

I Free fermion TIs classified [Kitaev: homotopy theory; Schneider et al: edge]

Interactions can affect the connectivity of
the phase diagram:

I (e.g. states which are adiabatically connected only via interacting

hamiltonians) [Fidkowski-Kitaev, 0904.2197]

I Bosonic SPT states require interactions, else superfluid.
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Group structure of SPT states

Simplifying feature:

SPT states (for given G) form a group:

-A : is the mirror image.

Note: with topological order, even if we can gap out the edge states, there is

still stuff going on (e.g. fractional charges) in the bulk. Not a group.

• [Chen-Gu-Wen, 1106.4772] conjecture: the group is HD+1(BG ,U(1)).
• ∃ ‘beyond-cohomology’ states in D = 3 + 1 [Senthil-Vishwanath]

• [Kitaev, unpublished] knows the correct construction of the group.

This talk: an implication of this group structure

– which we can pursue by examples – is...



Group structure of SPT states

Simplifying feature:

SPT states (for given G) form a group:

-A : is the mirror image.

Note: with topological order, even if we can gap out the edge states, there is

still stuff going on (e.g. fractional charges) in the bulk. Not a group.

• [Chen-Gu-Wen, 1106.4772] conjecture: the group is HD+1(BG ,U(1)).
• ∃ ‘beyond-cohomology’ states in D = 3 + 1 [Senthil-Vishwanath]

• [Kitaev, unpublished] knows the correct construction of the group.

This talk: an implication of this group structure

– which we can pursue by examples – is...



Group structure of SPT states

Simplifying feature:

SPT states (for given G) form a group:

-A : is the mirror image.

Note: with topological order, even if we can gap out the edge states, there is

still stuff going on (e.g. fractional charges) in the bulk. Not a group.

• [Chen-Gu-Wen, 1106.4772] conjecture: the group is HD+1(BG ,U(1)).
• ∃ ‘beyond-cohomology’ states in D = 3 + 1 [Senthil-Vishwanath]

• [Kitaev, unpublished] knows the correct construction of the group.

This talk: an implication of this group structure

– which we can pursue by examples – is...



Group structure of SPT states

Simplifying feature:

SPT states (for given G) form a group:

-A : is the mirror image.

Note: with topological order, even if we can gap out the edge states, there is

still stuff going on (e.g. fractional charges) in the bulk. Not a group.

• [Chen-Gu-Wen, 1106.4772] conjecture: the group is HD+1(BG ,U(1)).
• ∃ ‘beyond-cohomology’ states in D = 3 + 1 [Senthil-Vishwanath]

• [Kitaev, unpublished] knows the correct construction of the group.

This talk: an implication of this group structure

– which we can pursue by examples – is...



Surface-only models
Counterfactual:
Suppose the edge theory of an SPT state were realized otherwise
– intrinsically in D dimensions, with a local hamiltonian.

Then we could paint that the conjugate local theory on the

surface without changing anything about the bulk state.

And then small deformations of the surface Hamiltonian,

localized on the surface, consistent with symmetries, can

pair up the edge states.

But this contradicts the claim that we could characterize the
D + 1-dimensional SPT state by its edge theory.

Conclusion: Edge theories of SPTG states cannot be regularized intrinsically in

D dims, preserving G – “surface-only models”.

[Wang-Senthil, 1302.6234 – general idea, concrete surprising examples of 2+1 surface-only states
Wen, 1303.1803 – attempt to characterize the underlying mathematical structure, classify all such obstructions
Wen, 1305.1045 – use this perspective to regulate the Standard Model on a 5d slab

Metlitski-Kane-Fisher, 1302.6535; Burnell-Chen-Fidkowski-Vishwanath, 1302.7072 ]
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Summary of Nielsen-Ninomiya result on fermion doubling
The most famous example of such an obstruction was articulated
by Nielsen and Ninomiya:

It is not possible to regulate free fermions while preserving the
chiral symmetry.

(In odd spacetime dimensions, ‘chiral symmetry’ means ‘parity’.)

More precise (lattice) statement: A fermion action

S =

∫
BZ

d̄2kpΨ̄pD(p)Ψp

cannot satisfy all three of these:

1. D(p) is smooth and periodic in the BZ (i.e. the FT of a local
kinetic term on the lattice)

2. A single Dirac cone, i.e. D(p) ∼ γµpµ for |pµ| � 1, and D
invertible everywhere else.

3. {Γ,D(p)} = 0, where Γ is the chirality matrix (γ5).
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Illustration of fermion doubling

Simple illustration: attempt to regulate them on the lattice.

Then the momentum space is compact:

for n ∈ ZZ, e inap = e ina(p+ 2π
a ) =⇒ {p} ' T d (the Brillouin zone).

The hamiltonian is of the form

H =

∫
p∈BZ

hab(p)c†a(p)cb(p)

where h is a periodic map.
e.g., in 1+1d: sign

(
∂h
∂p

)
= Γ

• Friedan refinement: in each irreducible representation of the internal

symmetry group there are no chiral fermions.

• Consistent with ABJ anomaly, since an exact symmetry of the lattice model

is a symmetry.



Recasting the NN result as a statement about SPT states
Consider free massive relativistic fermions in

4+1 dimensions (with conserved U(1)):

S =

∫
d4+1xΨ̄ (/∂ + m) Ψ

±m label distinct Lorentz-invariant

(P-broken) phases.

One proof of this:

Couple to external gauge field

∆S =
∫
d5xAµΨ̄γµΨ.

log

∫
[DΨ]e iS4+1[Ψ,A] ∝ m

|m|

∫
A∧F∧F

Domain wall between them
hosts (exponentially-localized)

3+1 chiral fermions: [Jackiw-Rebbi,

Callan-Harvey, Kaplan]

More famous D = 3 + 1 analog:

S =

∫
d3+1xΨ̄

(
/∂ + m + im̂γ5

)
Ψ

With T -invariance, m̂ = 0.

m = ±m are distinct states (θ = 0, π):

log

∫
[DΨ]e iS3+1[Ψ,A] ∝ m

|m|

∫
F ∧ F

Domain wall hosts

a single Dirac cone in 2+1d.
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Strategy

Study a simple (unitary) gapped or topological field theory in 4+1
dimensions without topological order, wth symmetry G .

Consider the model on the disk with some boundary conditions.

The resulting edge theory is
a “surface-only theory with respect to G ”
– it cannot be regulated by a local 3 + 1-dim’l model while preserving G .



What does it mean to be a surface-only state?

These theories are perfectly consistent and unitary – they can be realized as

the edge theory of some gapped bulk. They just can’t be regularized in a local

way consistent with the symmetries without the bulk.

1. It (probably) means these QFTs will not be found as
low-energy EFTs of solids or in cold atom lattice simulations.

2. Why ‘probably’? This perspective does not rule out emergent
(“accidental”) symmetries, not explicitly preserved in the UV.

3. It also does not rule out symmetric UV completions that
include gravity, or decoupling limits of gravity/string theory.
(UV completions of gravity have their own complications!)

String theory strongly suggests the existence of Lorentz-invariant states

of gravity with chiral fermions and lots of supersymmetry

(the E8 × E8 heterotic string, chiral matter on D-brane intersections,

self-dual tensor fields...)

some of which can be decoupled from gravity.
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A simple example
The 4+1d analog of the K-matrix approach to 2+1d SPTs of
[Lu-Vishwanath].



A simple topological field theory in 4+1 dimensions
Consider 2-forms BMN in 4 + 1 dimensions, with action

S [B] =
KIJ

2π

∫
IR×Σ

B I ∧ dBJ

In 4`+ 1 dims, K is a skew-symmetric integer 2NB × 2NB matrix.
Note: B ∧ dB = 1

2
d(B ∧ B).

Independent of choice of metric on IR× Σ2p.

Related models studied in: [Horowitz 1989, Blau et al 1989, Witten 1998,

Maldacena-Moore-Seiberg 2001, Belov-Moore 2005, Hartnoll 2006]

[Horowitz-Srednicki]: coupling to string sources ∆S =
∫

ΓI
B I

computes linking # of conjugate species of worldsheets ΓI .

Simplest case is realized in IIB strings on AdS5 × S5,
B ≡ BNSNS ,C ≡ CRR :

SIIB 3
1

2π

∫
AdS5×S5

F
(5)
RR ∧ B ∧ dC =

N

2π

∫
IR×Σ

B ∧ dC

(allows for baryon vertex of N F-strings [Gross-Ooguri, Witten 98])
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‘Trivial but difficult’

S [B] =
KIJ

2π

∫
IR×Σ

B I ∧ dBJ

gauge redundancies: B I ' B I + dλI , λI are 1-forms

large gauge equivalences: B I ' B I+nαωα, [ωα] ∈ H2(Σ,ZZ), nα ∈ ZZb2(Σ).

• heavy machinery: [Freed-Moore-Segal 2006] I believe this machinery is not necessary if we

consider only Σ4 without torsion homology.

• This sort of model has been used
[Witten, 90s; Shatashvili, unpublished; Maldacena-Moore-Seiberg 01; Belov-Moore 03-06]

to ‘holographically’ define the partition function of the edge.

Mainly in D = 4`+ 3: 1+1d chiral CFTs, conformal blocks of 5+1d (2,0)

theory.

• The simplest model is equivalent to a ZZk 2-form gauge theory.
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‘Trivial but difficult’
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Bulk physics



When does the 4+1d CS theory have topological order?
Consider p forms in 2p + 1 dimensions:
S [B] = KIJ

2π

∫
IR×Σ2p

B I ∧ dBJ

For now, suppose that ∂Σ = ∅.
Gauge-inequivalent operators labelled by [ωα] ∈ Hp(Σ,ZZ):

Fωα(m) ≡ e2πimαI
∫
ωα

B I

large gauge eq =⇒ mα
I ∈ ZZ. ETCRs =⇒ Heisenberg algebra:

Fωα(m)Fωβ (m′) = Fωβ (m′)Fωα(m)e2πimαI m
′β
J (K−1)

IJIαβ .∫
Σ ωα ∧ ωβ = Iαβ, intersection form (symmetric for Σ4, AS for Σ2).

In 2 + 1: I ≈ 1g×g ⊗ iσ2

the irrep of this algebra has dimension | det(K )|g .
In 4 + 1: the irrep of this algebra has dimension |Pfaff(K ⊗ I)| .
Fact about 4-manifolds: I is unimodular =⇒

SRE ⇔ |Pfaff(K )| = 1 .



Zeromode quantum mechanics

A more direct construction of the groundstates.

Expand in zeromodes bIα ' bIα + 2π:

B I =

b2(Σ4,ZZ)∑
α=1

ωαbIα(t), span{[ωα]} = H2(Σ4,ZZ),

S =
KIJ

2π

∫
dt

∫
Σ4

ωα ∧ ωβbIαḃJβ =
KIJ

2π

∫
dtIαβbIαḃJβ

which describes a particle in b2(Σ) dimensions with a magnetic field in each

pair of dimensions of strength k, in the LLL.

As in 2+1d, Maxwell-like terms

∆S =

∫
Σ×IR

1

m
(dB ∧ ?dB + dC ∧ ?dC ) ∝

∫
dt

1

m
ḃ2

m <∞ brings down higher landau levels.



This is a model of bosons

Low-energy evidence: I did not have to choose a spin structure
to put this on an arbitrary 4-manifold.
(unlike U(1)k=1 CS theory in d = 2 + 1.)

Comment about spin structure:

On a manifold that admits spinors, the intersection form is even
(I(v , v) ∈ 2ZZ)

=⇒ to describe an EFT for a fermionic SPT state,
we should consider k ∈ ZZ/2.
[Belov-Moore] ‘spin Chern-Simons theory’.

High-energy (i.e. cond-mat) evidence:
Conjecture for a lattice model of bosons which produces this EFT:



Which model of bosons? [Thanks to Brian Swingle!]

• Put rotors e ibp on the plaquettes p of a 4d

spatial lattice.

e ibp |np〉 = |np + 1〉.

• Put charge-k bosons Φ` = Φ†−` on the links `.

[Φ`,Φ
†
`] = 1

[Wegner, ..., Motrunich-Senthil,

Levin-Wen, Walker-Wang, Burnell et al]

np ≡ # of ‘sheets’ covering the

plaquette.

Φ†` creates a string segment.

Φ†`Φ` ≡ # of strings covering the

link.

H = −
∑

links,`∈∆1

(
∑

p∈s(`)

np − kΦ†`Φ`)
2

︸ ︷︷ ︸
H1,

gauss law. happy when sheets close,
or end on strings

−
∑

volumes, v∈∆3

∏
p∈∂v

e ibp + h.c .︸ ︷︷ ︸
H3∼B2, makes sheets hop.

− Γ
∑
p∈∆2

n2
p︸ ︷︷ ︸

H2∼ E2. discourages sheets.

− t
∑
p∈∆2

e ikbp
∏
`∈∂p

Φ†` + h.c .︸ ︷︷ ︸
Hstrings, hopping term for matter strings

+V
(
|Φ|2

)

When Γ = 0, these terms all commute.

Soup of oriented closed 2d sheets, groups of k can end on strings.



Which model of bosons, cont’d

Condense Φ` = ve iϕ` : Hstrings = −
∑

p tv 4 cos
(

kbp −
∑

`∈∂p ϕ`

)
=⇒

(
e ibp
)k

= 1, |np〉 ' |np + k〉.
Leaves behind k species of (unoriented) sheets.

Groundstates: equal-superposition sheet soup. kb2 sectors for I = 1.



Continuum limit.

U(1)
Higgs→ ZZk 2-form gauge theory:

L =
tv 4

2
(dϕ1 + kB2) ∧ ? (dϕ1 + kB2) +

1

g 2
dB2 ∧ ?dB2

' k

2π
B ∧ dC +

1

8πtv 4
dC ∧ ?dC +

1

g 2
dB ∧ ?dB

with dC ' 2πt ? (dϕ+ kB).
[Maldacena-Moore-Seiberg hep-th/0108152, Hansson-Oganesyan-Sondhi cond-mat/0404327]



Edge states



Review of edge states of 2+1 CS theory.
Consider abelian CS theory on the LHP.

S =
k

4π

∫
IR×LHP

A ∧ dA

EoM for A0: 0 = F
=⇒ A = ig−1dg = dφ , φ ' φ+ 2π.

[Witten, Elitzur et al, Wen, ...

Belov-Moore]

Only gauge transfs which approach 1 at the bdy preserve SCS

=⇒ φ is dynamical.

Boundary condition: 0 = A− v(?2A) i.e.
At = vAx . v is UV data.

SCS [A = dφ] =
k

2π

∫
dtdx

(
∂tφ∂xφ+ v (∂xφ)2

)
.

Conclusion: φ is a chiral boson.
kv > 0 required for stability.

microscopic picture:

Note: The Hamiltonian depends on the boundary conditions; the H does not.
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Edge states of 4+1d CS theory.
Focus on the simplest case where K = k iσ2, S = k

2π

∫
B ∧ dC .

S [B,C ] =
k

2π

∫
IR×Σ4

B ∧ dC +
1

4g 2

∫
IR×∂Σ4

(C ∧ ?4C + B ∧ ?4C )

bc is:
(

k
2π
B − 1

2g2 ?4 C
)
|∂Σ4 = 0.∫

DBe iS = δ[dC ] =⇒ C = da

S [C = da] =
1

4g 2

∫
IR×∂Σ4

da ∧ ?4da

This is ordinary Maxwell theory! We know how to regularize this! e.g.

H = −
∑

vertices,v∈∆0

 ∑
`∈s(v)

n` − qv

2

−
∑
p∈∆2

∏
`∈∂(p)

e ib`+h.c .−
∑
`∈∆1

Γn2
` .

∆p ≡ {p − simplices}. s(v) ≡ {edges incident on v (oriented ingoing)} and

[bp, np] = i is a number-phase representation. bp ≡ bp + 2π, np ∈ ZZ.
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Symmetries



Continuous symmetries

In 2+1d CS theory, as it arises from QH states, we have a
conserved current (electron number):

0 = ∂µJµ =⇒ Jµ ≡
1

2π
εµνρ∂νAρ

J is conserved iff A is single-valued.

In 4+1, the analog is pairs of string currents

J I
µν ≡

1

2π
εµνρσλ∂ρB I

σλ



Demonstration that different K are different states

In D = 2 + 1: couple the particle currents J I = ?dAI to external
1-form potentials, AI :

log

∫
[DAI ]e i

∫
kAdA+i

∫
JIAI

=

∫
2+1

(
k−1

)
IJ
AIdAJ

– quantized Hall response (integer if no topological order, det k = 1).

In D = 4 + 1: Couple the string currents J I = ?dB I to external
2-form potentials, BI :

log

∫
[DB I ]e i

∫
KBdB+i

∫
JIBI =

∫ (
K−1

)
IJ
BIdBJ .

quantized ‘string Hall’ response (integer if no topological order,

PfaffK = 1).
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Symmetries

I Translation invariance is a red herring (I think!).
The lattice model should have the same edge states.

I Stringy symmetries: JB
`0|bdy = E`, J

C
`0|bdy = −B`.

E` ≡ ∂ta` − ∂`at B` ≡ ε`ij(∂iaj − ∂jai ) are ordinary E&M fields

JC
y0 = εijk∂iCjk = εijk∂i∂jak = ~∇ · ~B

JB
y0 = εijk∂iBjk = εijk∂iεjklE` = ~∇ · ~E .

This is ordinary charge, of course it has to be conserved.

I C: (B,C )→ −(B,C ) is (~E , ~B)→ −(~E , ~B). Preserved in pure

U(1) lattice gauge theory.

I T P: t → −t, xM → −xM , i→ −i, B → −B,C → C as
two-forms. Acts in the usual way on the EM field as (E ,B)→ (E ,−B).

I

EM DUALITY!: (B,C )→ (C ,B)

is a manifest symmetry of the bulk theory.
Unbreakable in the IR.
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7d CS theory and the (2,0) superconformal theory

While we’re at it, consider the following 6+1d TFT:

S7[C (3)] =
k

4π

∫
IR×Σ6

C (3) ∧ dC (3)

For k = 1, no topological order.

gauss law: C (3) = dc(2)

S7[C (3) = dc(2)] =
k

4π

∫
IR×∂Σ6

ε∂c(2) ·
(
∂tc

(2) + vε∂c(2)
)
.

(boundary condition: C0ij = v(?6C)ij .)

Conclusion: c is a self-dual 2-form potential in 5+1d.

‘Topological sector’ of the A0 (2,0) superconformal theory in 6d
– the worldvolume theory of M5-branes.

The conjecture that it can be consistently decoupled from gravity underlies

much recent progress in the field formerly known as strings [Witten, Gaiotto...].

e.g. it makes various deep 4d QFT dualities manifest.



Concluding remarks



Are all obstructions would-be-gauge-anomalies?
Many surface-only obstructions are anomalies: gauge anomalies;

gravitational anomalies; discrete gauge anomalies (e.g. Witten SU(2) anomaly)

They would be gauge anomalies if we tried to gauge the protecting symmetry.

Obstructions more general than obstructions to gauging:

1. [Senthil, Swingle]: SPT states protected by time-reversal T .
What would it mean to gauge i→ −i??

2. We found an obstruction to regularizing Maxwell theory
preserving EM duality. [Previous literature suggesting it’s impossible: Deser 1012.5109,

Bunster 1101.3927, Saa 1101.6064] [in other cases, it is possible to gauge EM duality: Barkeshli-Wen]

3. We found an obstruction to regularizing a self-dual 2-form
theory in D = 5 + 1. One might have thought by analogy
with chiral CFTs (chiral boson: dφ = ?dφ) that a gravitational
anomaly was relevant here. In 1+1 dimensions, cL − cR
measures an anomaly that arises upon coupling the theory to
gravity.
D = 5 + 1 6= 2mod8: no gravitational anomalies [AlvarezGaume-Witten, 1983].

4. And what about supersymmetry?
Gauging this leads to supergravity!
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The end

Thanks for listening.


