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Stringy Instantons
do new things 

in the presence of 
and



media-level view of the situation:

We know how to make quasi-realistic gauge theories.

We know how moduli can be stabilized.

What happens when we try to 

do both at the same time?



A Motivating Puzzle

In IIB on a CY with fluxes, 

the kahler moduli are stabilized by 

a superpotential generated by euclidean D3-branes.

KKLT, hep-th/0302...

Now suppose there are some space-filling branes present.

∆W ∝ e−ρ ρ ∼
∫

X

(
J2 + iC(4)

)

The shift symmetry of Im ρ is broken only by this.



Why might we care about the 
case with branes?

1.  In such systems, the Standard Model

must live on such a brane!

2.  There exists a beautiful characterization

of which quivers should dynamically break SUSY.

When they are decoupled, they run away.

3.  It’s a necessary ingredient for understanding 
global structure of stringy configuration space.



Kahler moduli become charged fields:

G =
∏

a

U(Na)

U(1) ⊂ U(Na)Some of the will be anomalous.

This anomaly is cancelled by shifts of Im ρ

∆W ∝ e−ρ isn’t gauge invariant!

The open-string gauge group is



lessons

These operators are in general dangerously irrelevant.

Field theories whose vacua get pushed to large vevs 
are a source of UV sensitivity.

The point: the quiver field theory gets perturbed by 
baryonic operators which affect its vacuum structure.

This is a general mechanism for generating operators 
which grow when the gauge symmetry is very 
higgsed -- not strong gauge theory effects.



Outline
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1.  ‘SUSY breaking by obstructed deformation’
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4. Vacuum structure

dP1



DSB by D-branes?



Interesting ones live on branes at singularities.
D-branes carry gauge theories.

Singularities arise from shrinking things.

shrinking a curve in CY conifold.

Next case: surfaces

A surface in a CY which can be shrunk 
is a del Pezzo surface.

brane wrapping

CY

shrinking cycleWhat can shrink 
supersymmetrically?



Berenstein Herzog Ouyang Pinansky, hep-th/0505029
Franco Hanany Saad Uranga, hep-th/0505040
Bertolini Bigazzi Coltrone, hep-th/0505055

Branes stuck to shrinking dPs

gauge-string duality

hard to deform

del Pezzo cones are not complete intersections

(unlike conifold)

(Altmann)

Looks like gravity dual 
of Konishi anomaly: trWαWα ∝ ∂W

∂φ
= Fφ

(Klebanov-Strassler, Vafa)

gaugino condensates complex structure
deformations



the DSB representation of  

i

a

M2M

3M

u

L

Q

Wtree = λia QuiLa

dP1

breaks flavor symmetry SU(3)× SU(2) −→ SU(2)diag

very similar to 3-2 model
Affleck Dine Seiberg 1984

a = 1, 2, 3 i = 1, 2

Lots of work was done 
to figure out what quiver

corresponds to what geometry.

factors are IR free.SU(M) U(1)and



  

Since anomalous U(1) gauge fields are massive, they are not present in the low-energy

effective field theory. For this reason, their D-term equations should not be imposed.

Equivalently, supersymmetry pairs B with a field φ, which plays the role of the FI term for

the anomalous U(1) [18]. The D-term of the anomalous U(1) gauge field can then always

relax to zero, by suitable expectation value 〈φ〉, so it does not constrain the low-energy

fields. This agrees with the discussion in [2], sect. 3.2.3. See [13] for a discussion in the

context of compact Calabi-Yaus, where it is suggested that some other dynamics could

perhaps induce an additional potential for the Kähler modulus φ.

3. The gauge theory

The gauge theory of M wrapped D5 branes on the complex cone over F1 is

SU(3M) SU(2M) SU(M) [SU(2) U(1)F U(1)R]

Q 3M 2M 1 1 1 −1

u 3M 1 M 2 −1 0

L 1 2M M 2 0 3

L3 1 2M M 1 −3 −1,

(3.1)

where SU(3M) × SU(2M) × SU(M) are the gauge symmetries, and the groups in [·] are

the global symmetries, with U(1)R an R-symmetry. There is a tree-level superpotential

Wtree = hQuiLjε
ij , (3.2)

where we here explicitly write the SU(2) flavor indices i, j = 1, 2.

Note that we cannot extend SU(3M) → U(3M), because the additional U(1)3M factor

would be anomalous under both of the other two groups, e.g. TrU(1)3MSU(2M)2 = 3M ;

similarly, we cannot extend SU(2M) → U(2M) or SU(M) → U(M), each of the additional

U(1) factors would be anomalous under both of the other two gauge groups.

The couplings, and their charges under various symmetries (some broken) are:

U(1)Q U(1)u U(1)L U(1)L3
U(1)F U(1)R

Λ7M
3M 2M 2M 0 0 0 0

Λ3M
2M 3M 0 2M M 0 0

Λ−3M
M 0 6M 4M 2M −12M 0

h −1 −1 −1 0 0 0.

(3.3)

4

i

a

M2M

3M

u

L

QNf = Nc − 1For M=1, SU(3) has

WADS =
Λ7

3

det Q · u

Wtree = λQεiju
iLj

Symmetries of the quiver
gauge symmetries global symmetries



anomalies in U(1)s

Mixed anomalies give mass to the baryonic U(1)s
by the GS mechanism.

U(1)B

SU(kM)

SU(kM)

is a RR axion.φ

Dine Seiberg Witten 1985

Light closed strings are inextricably 
involved in the problem.

i

a

M2M

3M

u

L

Q

L = ... + φ trF ∧ F + m2(∂φ + A)2

A→ A + dλ
φ→ φ− λ



anomalies from U(1)s

The R-charge is also anomalous:

In the noncompact model, this is cancelled by a 
coupling to other RR fields: 

RR 2-form, projected out
in compact model.

i

a

M2M

3M

u

L

Q

U(1)R

U(1)B,α

U(1)B,β

δC(2) = εrβFβ

∂µjµ
R = rαrβFαFβ

S = ... +
∫

R3,1
C(2) ∧ rαFα





Runaway
Intriligator Seiberg, hep-th/0512347 :

The theory with gauge group

has no vacuum at finite distance in field space.

s run away: V(V ) ∝ (V †V )−1/6

(M=1)

L

SU(3)× SU(2)

V a ≡ det(La, Lb)εabc

‘SUSY-BOG’ crucially used D-term conditions 
from            s:U(1)B∑

|L|2 = ξ L’s are bounded.



This isn’t the end of the story:

This is the theory in a certain 
decoupling limit of “local        ” where

In a compact CY, with ms <∞

m(U(1)B)→∞.

dP1

U(1)B s matter.,



finite kinetic terms, finite mass for gauge bosons.

let’s assume that we’re studying

a compact CY containing a dP singularity.

m = axion kinetic term, mass of A

φ normalizable m finite

m = ms ×Kφφ(t)

It can be embedded in a compact CY.
Diaconescu Florea Kachru Svrcek, hep-th/0512170( )



Massive U(1)s matter 

Arkani-Hamed Dine Martin, hep-ph/9803432

integrating out massive gauge bosons

induces kahler corrections which

add the D-term potential

∆K = − g2
X

M2
X

qiqjφ
!iφ iφ

!jφj

Their D-terms must be imposed in finding vacua.



Including the 
baryonic U(1)s



There are two independent anomalies.

            has two 2-cycles,          .

U(1)1U(1)2U(1)3

eiφS 0 -6 6

eiφc 1 2 -3

eiφf 2 4 -6

φS ≡
∫

dP1

C(4)
RR φf ≡

∫

dP1

C(2)
RR ∧ fφc ≡

∫

dP1

C(2)
RR ∧ c

Neutral combination: 2φc − φf∃

dP1 c, f

We find their charges 
by demanding that

√
Td ∧ chVα ∧ trαF ∧ F

)

δΓeff =

−δ

(
3∑

α=1

∫

branes, α

∑

p

C(p)
RR∧



“Kahler moduli are charged”

Witten, hep-th/9604030
KKLT, hep-th/0301240

kahler moduli in IIB are stabilized by 

euclidean D3-branes

important question:

∆W ∼ e−ρ

ρ !→ ρ + iλ, AB !→ AB + dλ

ρ ≡
∫

D
(J2 + iC(4)

RR) = σ + iφS

but now this isn’t gauge invariant!

How to make a gauge-inv’t potential
for kahler moduli?



A hint

Massless strings stretching between the 
instanton and spacefilling branes

act like collective coords of the instanton,
and couple to quiver fields.

Integrating out these modes 
multiplies the instanton contribution by 

a function of the quiver fields.

instanton
quiver brane

A Note on zeros of superpotentials in F theory.
Ori J. Ganor (Princeton U.) . PUPT-1672, Dec 1996. 12pp. 
Published in Nucl.Phys.B499:55-66,1997 
e-Print Archive: hep-th/9612077



The instanton prefactor
is a field theory operator

instantonic D3
spacefilling D3-brane

z

α

β

Ganor, hep-th/9612077

∆W (ρ, Z) ∼ e−ρ

∫
dαdβ eα·Z·β ∼ Z e−ρ

an ordinary 
Grassmann integral

Ldisc = α · Z · β



Which D-branes 
contribute?



del Pezzo D-geometry

an “exceptional collection” of branes on           is:dP1

(the DSB representation above is 
L1 ⊕ 2L4 ⊕ 3L3

we need to know this because 
we are going to study 

euclidean branes and their 
interactions with these D7s

Wijnholt Herzog Walcher Aspinwall Karp Melnikov Nogin...

{L1, . . . ,L4} ≡

{OdP1 ,OdP1(c + f),OdP1(f),OdP1(c)}

L1

L2 L3

L4

)



Counting Ganor strings
Twisting of 3-7 strings:

3-7 bosons transform as 

3-7 fermions transform as:

reduction of hypermultiplet on dP
SO(10) ⊃ SO(4)R4 × SO(4)dP1 × SO(2)⊥

(S′ ⊗ S+ ⊗ LA ⊗ L!
B)⊕ (S′ ⊗ S− ⊗ L!

A ⊗ LB)

(
S′′

+ ⊗ LA ⊗ L!
B

)
⊕

(
S′′
− ⊗ L!

A ⊗ LB

)

S =
(
S′′

+ ⊕ S′′
+

)
⊕ (S+ ⊕ S−)⊕

(
N

1
2 ⊕N− 1

2

)

S+ = K1/2 ⊕
(
K1/2 ⊗ Ω0,2

)
S+ = K1/2 ⊗ Ω0,1 K = N



Counting Ganor strings

net number of 3-7 bosons is counted by 

net number of 3-7 fermions is counted by 

h0(dP,LA ⊗ L!
B)− h0(dP,LB ⊗ L!

A)

χ(LA ⊗ L!
B) ≡

3∑

p=0

(−1)php(dP,LA ⊗ L!
B)



The ADS instanton is a D3 brane

D3 on SU(3) node = field theory instanton
(for M=1)

see: Bershadsky et al, hep-th/9612052

∆W ∝
∫

dadb ea(Q·u)b =
1

detQ · u

There is a net number of bosonic Ganor strings

Ldisc ∼ a(Q · ui)bi

a

i

a b

M2M

3M

uQ

L

L3



What about Witten’s criterion?

In the M-theory lift, an M5-brane wrapping

Witten, hep-th/9604030

This carries R-charge: 2χ(D) = 2
3∑

p=0

(−1)ph0,p(D)

If this is to be a term in W: χ = 1
χ = 0Our D3-branes lift to M5-branes with .

a divisor D  contributes .exp
(
−

∫

D

(
J3 + iC(6)

))

The R-symmetry of the quiver 
is anomalous.



Other instantons

there is a net number of fermionic Ganor strings

Ldisc ∼ α(Ladi
a)βi

di
a are some numbers

!

a

" i

M2M

3M

u

L

Q

For a certain class of line bundles 

Xn ≡ O(2(1− n)c + nf)

Xn

∆W ∝
∫

dαdβ eα(La)βid
i
a

This cancels the charges of the instanton action factor.

= det
(
L1, L2

)
= V 3



Other instantons

Many other candidate instantons 
vanish because of unpaired fermion zeromodes:

All euclidean D-strings.

IP1 → curve in dP1

‘vertical’ branes:

1

1

2
1

vertical divisor

dP

c

P

are more model-dependent.

stabilize fiber volume.



cartoon of result

U(1)R

The baryon preserves the flavor symmetry, and 
breaks the                 .

W = QuL +
e−ρ1

detQu
+ e−ρ2det(L2, L3)



more accurate version of result

contribution 
of D3 on

W = λQuiLjεij +
e−ρ1

det Qu

Xn

+

(
∑

n

cne−nρ′

)
det(L2, L3)

and multicovers.



Vacuum structure?



Effect of baryon term

Poppitz Shadmi Trivedi, hep-th/9606184

If the baryon breaks the flavor symmetry, 
we get the 3-2 model.

It would be nice to understand the structure of the 
effective potential in more detail.

It doesn’t.  

But: there is still no SUSY vacuum.

And: the potential grows at large fields.



Summary of vacuum structure

For quiver fields, like Poppitz et al.

quiver fields

Once Kahler moduli are massive, 
D-term stops runaway.

For Kahler moduli, like KKLT. W = W0 + 〈O〉e−αρ

!

has a solution for generic                .K(ρ, ρ̄)
DρW = 0

〈F 〉 ∝ Λ#
3



Conclusions



A comment about jumping

The alignment of ‘central charges’ on the quiver locus 

breaks at some real codim 1 wall in kahler moduli sp.

(curves of marginal stability).

Does this mean that the superpotential

is discontinuous?  Surely no.

Stokes phenomenon: saddle points move 

on and off the steepest-descent contour,

integral remains analytic.



related recent work

Buican, Malyshev, Morrison, Verlide, 
Wijnholt, hep-th/0610007

Ibanez, Uranga, hep-th/0609213

Blumenhagen, Cvetic, Weigand, hep-th/0609191

Lust et al, hep-th/0609...

application to mu terms:

application to neutrino masses:

also:

µHα
u Hβ

d εαβ is a baryon.

mνανβεαβ is a baryon.
B-L is the anomalous U(1).



This technology generalizes
to other DSB representations:

Sensitivity to embedding
 in compact model?

V can be thought of as position of D3
dissolved in quiver.

reduces to Ganor’s result.∆W ∝ V

1

2

3

4
a

M

2M

M

~Q

L

Q

Final comments

but perhaps it is in another UV completion.
∆W ∝ V is not a field theory instanton here,



the end


