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The purpose of this chapter is to think about why the world seems like it is classical,
although we have every reason to believe that it is in fact quantum mechanical.

The world seems classical to us, and apparently not quantum mechanical. Similarly, it can
seem like the Sun is orbiting the Earth. As in the Wittgenstein story related by Coleman,
we’d like to try to ask “And how would it have looked if it had looked the other way?” In
the Wittgenstein story, he is asking how it would have looked if the Earth were orbiting the
Sun, which it is. Here we will ask: how would it have looked if the world were quantum
mechanical, which it is. As Coleman says: “Welcome home.”

We will give three classes of answer to this question. In order of increasing degree of diffi-
culty, and increasing explanatory power, they can be called: Ehrenfest’s Theorem, stationary
phase, and decoherence.

2.1 Ehrenfest’s Theorem

[Shankar, Chapter 6] But first, a simple way in which we can see that some of classical
mechanics is correct, even in quantum mechanics, is the following. (It is actually the same
manipulation we did when we studied time evolution of the density matrix of a closed system.)

Consider the time evolution of expectation values of operators in a pure state |ψ〉:

∂t〈A〉ψ = ∂t (〈ψ|A |ψ〉) =
〈
ψ̇
∣∣∣A |ψ〉+ 〈ψ|A

∣∣∣ψ̇〉+ 〈ψ|Ȧ |ψ〉 .

If operator A has no explicit time dependence, i.e. it is the same operator at all times, then
we can drop the last term. Axiom 3 says:∣∣∣ψ̇〉 = − i

~
H |ψ〉 ,

〈
ψ̇
∣∣∣ = +

i

~
〈ψ|H

so

∂t〈A〉ψ = − i

~
〈ψ| (AH−HA) |ψ〉 = − i

~
〈[A,H]〉ψ.

This is called Ehrenfest’s theorem.1

If you have encountered Poisson brackets in classical mechanics, you will recognize the
similarity of this equation with the classical evolution equation

∂ta = {a,H}PB.

To make closer contact with more familiar classical mechanics, consider the case where
A = x, the position operator for a 1d particle, whose Hamiltonian is

H =
p2

2m
+ V (x).

1This was not the most impressive thing that Ehrenfest did during his career as a physicist.
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So:

∂t〈x〉 = − i

~
〈[x,H]〉 = − i

~
〈[x, p2

2m
]〉.

An opportunity for commutator algebra: [x,p2] = p[x,p] + [x,p]p = 2i~p. So

∂t〈x〉 = − i

~
〈2i~p

2m
〉 = +

〈p〉
m
. (1)

Surely you recognize the relation ẋ = p/m from classical mechanics. In QM it’s true as a
relation among expectation values.

Consider

∂t〈p〉 = − i

~
〈[p,H]〉 = − i

~
〈[p, V (x)]〉

To find this commutator, use the position basis:

[p, V (x)] =

∫
dx |x〉 〈x|[−i~∂x, V (x)] = −i~

∫
dx |x〉 〈x|∂xV (x) = −i~V ′(x)

– unsurprisingly, p acts as a derivative. So

∂t〈p〉 = − i

~
〈−i~V ′(x)〉 = 〈−∂H

∂x
〉

Compare this with the other Hamilton’s equation of classical mechanics, ṗ = −∂H
∂x

.

(Notice by the way that for more general H, we would find

∂t〈x〉 = 〈∂pH〉

instead of (1). )

Beware the following potential pitfall in interpreting Ehrenfest’s theorem. Just because the
average value of x evolves according to ∂〈p〉 = 〈−∂xH〉, does not mean that it satisfies the
classical equations of motion! The issue is that in general 〈−∂xH〉 is not linear in x (only
for a harmonic oscillator), and

〈x2〉 6= 〈x〉2 .

Fluctuations about the mean values can matter!

I am skipping here some valuable remarks in Shankar pages 182-183 discussing when clas-
sical evolution is valid, and why it requires heavy particles. We’ll see a bit of this in the next
subsection.
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2.2 Measurement, first pass

[Preskill 3.1.12] Here is a simple model of how measurement happens (due to von Neumann),
first in summary form and then more concretely. To measure an observable M of some
system A, we couple it to something we can see, a “pointer.” This means tensoring with the
Hilbert space of the pointer H = HA⊗Hpointer, and adding a term to the Hamiltonian which
couples the observable of interest to an observable of the pointer:

H = ...+ ∆H = ...+ λM⊗P (2)

where the ... are the terms that were there before, and include the dynamics of the pointer
system. The time evolution by this Hamiltonian then acts by a unitary operator on the
whole world (system ⊗ pointer), and creates entanglement between the two parts – that
is, it will produce a state which is a superposition of different eigenstates of the observable
tensored with states of the pointer that we can distinguish from each other:

|ψ〉 ∼ a1 |m1〉 ⊗ |p1〉+ a2 |m2〉 ⊗ |p2〉 .

The measurement occurs when system A becomes entangled with the pointer. (We are going
to postpone the discussion of how we see the pointer!)

To be more concrete, let’s focus on an example where the pointer is the position of a particle
which would be free if not for its coupling to M.

This means the Hamiltonian for the full system is

H = H0 + 1 ⊗ P2

2m
+ λM⊗P

where now P is the momentum of the pointer particle and m is its mass; we get to pick
λ. You might worry that the observable M will change while we are trying to measure it,
because of evolution by H0. This problem doesn’t arise if either we pick an observable which
is a conserved quantity [M,H0] = 0 or if we don’t take too long.

Here’s why we want the pointer-particle to be heavy (large m) to use our classical intuition.
We want to be able to wait for a bit and then measure the position of the particle. You’ll
recall that in quantum mechanics this is not trivial: we don’t want it to start in a position
eigenstate, because time evolution will cause it to spread out instantly (a position eigenstate
is a superposition of momentum eigenstates with equal amplitude for arbitrarily-large mo-
mentum). We want to start it out in a wavepacket with some finite width ∆x, which we can
optimize.

In this case, its initial uncertainty in its velocity is ∼ ∆v = ∆p/m ∼ ~
m∆x

; after time t its
width becomes

∆x(t) ∼ ∆x+
~t

m∆x
.

2Skip the scary sections of Preskill (3.1.2-3.1.5) about generalized measurement and ‘POVM’s.
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If the experiment will take a time t, we should minimize ∆x(t) over the initial width ∆x;
that gives (∆x)2 ∼ ~t/m, which also gives the uncertainty in the final position

∆x(t) ≥
√

~t
m

.

Consistent with your intuition, we can avoid this issue by taking a really heavy particle as
our pointer.

So the only disturbance of the system caused by the coupling to this heavy particle is from
the term we added (we’ll ignore the P2

2m
term because the particle is heavy and we don’t wait

long):
Hp ≡ λM⊗P .

(I will stop writing the ⊗ now: MP ≡M⊗P.) The time evolution operator is

U(t) = e−iλtMP .

In the M eigenbasis M =
∑

n |mn〉 〈mn|mn, this is

U(t) =
∑
n

|mn〉 〈mn|e−iλtmnP .

But recall from Taylor’s theorem that P generates a translation of the position of the pointer
particle:

e−ix0Pψ(x) = e−x0∂xψ(x) = ψ(x− x0).

Acting on a wavepacket, this operator e−ix0P moves the whole thing by −x0.

So: if we start the system in an arbitrary state of A, initially unentangled with the pointer,
in some wavepacket ψ(x):

|α〉A ⊗ |ψ(x)〉 =
∑
n

αn |mn〉 ⊗ |ψ(x)〉

then this evolves to

U(t)
((∑

n

αn |mn〉

)
⊗ |ψ(x)〉

)
=
∑
n

αn |mn〉 ⊗ |ψ(x−mnλt)〉

the pointer moves by an amount which depends on the value of the observable mn! So if
we can resolve the position of the particle within δx < λt∆mn, we can put the system in
an eigenstate of M. The probability for finding the pointer shifted by λtmn is |αn|2; we
conclude that the initial state |α〉 is found in eigenstate mn with probability |〈mn|α〉|2, as
we would have predicted from Axiom 4.

[End of Lecture 12]
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I would like to amplify this last remark.
Suppose we choose the initial wavepacket
for the pointer particle to be ψpacket(x) as
in the figure, so that its support is entirely
within a ‘bin’, a range of x, determined by
our measuring resolution (the size of the
bin should be larger than ∆x(t)). That is:
ψpacket(x) = 0 for x outside ‘Bin 0’. Because
the particle lives in the continuum, the prob-
ability of its being at any one value of x is
infinitesimal : so that |ψpacket(x)|2 is a probability distribution. To get a finite probability
we must integrate. The probability to find a particle in the state ψpacket(x) inside ‘Bin 0’ is∫

Bin 0

dx|ψpacket(x)|2 = 1.

So far we’ve just talked about the wavefunction of the pointer. In the initial state of the
whole system,

|ψ0〉 = |α〉 ⊗ |ψpacket〉 =
((∑

n

αn |mn〉

)
⊗ |ψpacket〉

)
how do we determine the probability of finding the pointer particle in Bin 0? The operator
we are measuring when we look for the pointer at x is 1A ⊗ x – we are not looking directly
at the system, only at the pointer particle. So if the answer is x, the projector onto the
outcome space is

1A ⊗ |x〉 〈x|

and the probability density is (AS ALWAYS) the expectation value of the projector onto the
outcome space:

〈ψ0| (1A ⊗ |x〉 〈x|) |ψ0〉 = 〈α|α〉 · |ψpacket(x)|2 = |ψpacket(x)|2

so the answer (in this product state) is the same as if the system weren’t there at all.

But the state of the whole system (system plus pointer) at time t is:

|ψt〉 = U(t)
((∑

n

αn |mn〉

)
⊗ |ψpacket(x)〉

)
=
∑
n

αn |mn〉 ⊗ |ψpacket(x−mnλt)〉

In this state, the probability density for the pointer particle location is

pt(x) = 〈ψt| (1A ⊗ |x〉 〈x|) |ψt〉 =
∑
n

|αn|2|ψpacket(x− λmnt)|2 .
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Assume for simplicity that one of the eigenvalues of M is m0 = 0; then the probability of
finding the particle in Bin 0 is now∫

Bin 0

dxpt(x) =

∫
Bin 0

dx|ψpacket(x)|2 = |α0|2.

Measuring spins (Stern-Gerlach)

I need to comment on how one measures spins, to make it clear that it can really be done,
and as an example of the preceding discussion.

If we want to measure σz of a spin-1
2

particle, we send it through a region of inhomogeneous
magnetic field. Its magnetic moment is µ~σ, and so the term coupling the system A ( = the
spin of the particle) to the pointer variable (which will turn out to be the z-momentum of
the particle) is

Hp = ~µ · ~B = −λµzσz .

where we have chosen ~B(~x) = −λzẑ to vary linearly in z.

The point of having an inhomogeneous field is so that this exerts a force on the particle.
The direction of the force depends on its spin. To connect with the previous discussion: Here
the observable we want to measure is M = σz. Redoing the previous analysis, we encounter
the operator

e−imz = e−m
d
dpz

which generates a translation in pz, the momentum of the particle, by m: it imparts an
impulse to the pointer system (which is the translational degree of freedom of the particle
itself). We then watch where the particle goes – if it goes higher/lower than where it was
headed, its spin was up/down.

To measure σx instead, we rotate the magnets by π/2. More generally, we can measure
~σ · n̂ for some unit vector n̂ in the xz plane by tilting the magnets so the field points along
n̂ and depends on ~x · n̂.

If we attenuate the beam so that one particle passes through during a macroscopic amount
of time, it still hits one or the other spot. If the initial state isn’t an eigenstate of σz, no
one has figured out a way to predict which spot it will hit. The discussion above on Bell’s
inequalities was intended to demonstrate that there is experimental evidence that it is not
possible even in principle to make this prediction.

Notice that it is very convenient (perhaps too convenient) that observables in QM are
represented by Hermitian operators, since this means that we can always add them to the
Hamiltonian as in (2) (multiplied by some operators from the measuring device) to describe
measuring devices.
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Orthogonal measurements and generalized measurements

A brief and ignorable side-comment about why there are those scary ‘POVM’ sections in
Preskill’s notes, for your future reference: the kind of measurement we described above is
called ‘orthogonal measurement’. This is fully general, as long as we have access to the
whole system. If we must forget about part of the system – just as in that case states are
not rays and time evolution is not unitary – measurement is not orthogonal projection onto
eigenstates. One reason that this becomes tricky is that we can consistently assign mutually
exclusive probabilities to two observations only if there is no possibility of their interference.
Those scary sections straighten this out by answering the question: “What does a projection
onto an eigenstate in the full Hilbert space look like to the reduced density matrix of a
subspace?”

2.3 Decoherence and the interpretation of QM

[Le Bellac 6.4.1, Preskill §3.4] So far in our discussion of quantum mechanics, the measure-
ment axiom is dramatically different from the others, in that it involves non-linear evolution.
The discussion of von Neumann’s model of measurement did not fix this problem, but merely
postponed it.

To see that there is still a problem, suppose we have a quantum system whose initial state
is either |+〉 or |−〉 (e.g. an electron whose spin is up or down along the z direction), and
we do some von Neumann measurement on it (e.g. we send the electron through a Stern-
Gerlach apparatus also oriented along z) as a result of which it becomes entangled with the
measuring apparatus (e.g. the electron’s position at some detector) according to the rule

|+〉 ⊗ |Ψ0〉 → |+〉 ⊗ |Ψ+〉 , |−〉 ⊗ |Ψ0〉 → |−〉 ⊗ |Ψ−〉 ,

where |Ψ0〉 is the initial state of the pointer and the measuring apparatus and 〈Ψ+|Ψ−〉 = 0.

But now what if the initial state of the spin is not just up or down along z? The von
Neumann evolution is still linear:

(λ |+〉+ µ |−〉)⊗ |Ψ0〉 → λ |+〉 ⊗ |Ψ+〉+ µ |−〉 ⊗ |Ψ−〉

which we are supposed to picture as a superposition of macroscopically different states of
the measuring apparatus, a Schrödinger’s cat state.

To understand why in practice we end up with one or the other macroscopic state (and
don’t see any effects of interference between the outcomes) something has to pick a basis.

The thing that picks the basis is a phenomenon called decoherence which results from the
coupling of the system to its environment. By the ‘environment’ here I mean all the rest of
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the world, like the dust particles in the room and the air molecules and the photons from
the overhead lights and the photons from the Cosmic Microwave Background; what these all
have in common is that we don’t keep track of their quantum state.

The choice of basis is determined by how the system is coupled to the environment. Gener-
ally, this coupling is via local interactions, and this is why we experience macroscopic objects
as having a definite location.

The idea is that the environment is making (von Neumann) measurements of our system
– it interacts with it and becomes entangled with it. But because we don’t keep track
of the state of the environment, we must trace out the Hilbert space of the environment.
And (I claim and will explain below that) the off-diagonal entries of the resulting reduced
density matrix for the system rapidly become small as a result of the interactions with the
environment:

ρbefore decoherence = |ψ〉 〈ψ| = (λ |1〉+ µ |2〉) (λ?〈1|+ µ?〈2|)

ρduring decoherence = |λ|2 |1〉 〈1|+ |µ|2 |2〉 〈2|+ e−tγ (λµ? |1〉 〈2|+ µλ? |2〉 〈1|) (3)

‘Rapidly’ here means much faster than other natural time scales in the system (like ~/∆E).
For practical purposes, this process is irreversible, since the correlations (e.g. the information
about the relative phase between |1〉 and |2〉 in an initial pure state) are lost in the huge
Hilbert space of the environment; it leaves the system in a classical mixture,

ρafter decoherence = |λ|2 |1〉 〈1|+ |µ|2 |2〉 〈2|.

So the claim is that most of the states in the Hilbert space of any system with an environment
(any system we encounter outside an ultracold vacuum chamber) are fragile and decay rapidly
to a small subset of states that have a classical limit. (These are sensibly called ‘classical
states’.) We will see this very explicitly in a simple model, below.

[End of Lecture 13]

2.3.1 A simple way to think about how interactions with the environment de-
stroy interference effects

You can prevent interference effects by measurements. As a paradigmatic example of inter-
ference effects, consider yet again the double slit experiment. If you measure which hole the
particle goes through, you will not see the interference pattern. I will illustrate this claim
next, but first, consider who is ‘you’ in the preceding sentences? ‘You’ could just as well be
the dust particles in the room. So this discussion provides a model of how to think about
why quantum interference is destroyed by coupling to the environment.

Consider the following description of the double-slit (this next paragraph is just setting up
notation and I hope is familiar!). If the particle goes through the upper path (call this state
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|↑〉), the resulting wavefunction at the detector screen is ψ↑(x); the probability of seeing the
particle hit the location x is P↑(x) = |ψ↑(x)|2. Similarly, the lower path state |↓〉 produces
the wavefunction ψ↓(x), with resulting distribution of hits at the detector P↓(x) = |ψ↓(x)|2.
A superposition of the two states µ |↑〉 + λ |↓〉 produces the superposition of wavefunctions
|superposition〉 = µψ↑ + λψ↓. Now the detector records the interference pattern:

Psuperposition(x) = |µψ↑(x) + λψ↓(x)|2 = |µ2|P↑(x) + |λ|2P↓(x) +
(
µλ?ψ↑(x)ψ?↓(x) + cc

)︸ ︷︷ ︸
interference terms

where ‘cc’ stands for complex conjugate. The last two terms represent the consequences of
interference (e.g. they are the ones that oscillate in x).

Now suppose that the particle is coupled to some environment which is influenced by which
slit it traverses; in particular an initial product state evolves via interactions into

(µ |↑〉+ λ |↓〉)⊗ |ψ〉E
wait→ µ |↑〉 ⊗ |a〉+ λ |↓〉 ⊗ |b〉 ≡ |E〉

where a, b are some states of the environment. This is just like our description of von
Neumann measurement: the system becomes entangled with the measuring device.

But now what’s the resulting pattern on the detector screen, Probthis entangled state, E(x) ?

ProbE(x) = ||µψ↑(x) |a〉+ λψ↓(x) |b〉 ||2
= |µψ↑(x)|2〈a|a〉+ |λψ↓(x)|2〈b|b〉+

(
µλ?ψ↑(x)ψ?↓(x)〈a|b〉+ cc

)︸ ︷︷ ︸
interference terms

. (4)

The crucial point is that the size of the interference terms is multiplied by the number 〈a|b〉
– the overlap between the two different states into which the environment is put by looking
at the particle path. For example, if the states are orthogonal, the interference effects are
completely gone; this is the case where the environment has successfully measured the path
of the particle, since |a〉 and |b〉 can be distinguished for sure. The extent to which the state
of the environment is a useful pointer for the which-way information is exactly the extent to
which the interference is destroyed!

(Thanks to Eric Michelsen for provoking me to add this discussion. You may enjoy his
slides on decoherence, here.)

2.3.2 Time evolution of open systems

[The intimidating Le Bellac Chapter 15.2] You shouldn’t be satisfied with the discussion of
decoherence so far. Where did the e−γt in Eq. (3) come from?

Given a pure state in HA ⊗ HB evolving according to some Hamiltonian evolution, how
does the reduced state operator ρA evolve? Given any example we could (in principle) figure
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it out by explicit computation of the reduced density matrix. We saw in Chapter 1 that
if the two subsystems A and B don’t interact, its evolution is unitary. If the systems do
interact, I claim that the reduced state operator evolves over a finite time interval in the
following way, by Kraus superoperators:

ρA → K(ρ) =
K∑
µ=1

MµρAM†
µ, (5)

where unitary evolution of the whole system is guaranteed by

K∑
µ=1

M†
µMµ = 1A,

and K is some number which depends on the system and its coupling to the environment.
On the other hand,

∑
µ MµM

†
µ can be some crazy thing. (Note that the object K is called

a ‘superoperator’ because it is an operator that acts on operators.)

The statement that the evolution of ρA can be written this way is very general. In fact
any linear operation which keeps ρ⊗ 1

dimHC
1C a density matrix for any C has a such a form.

Such a thing is called a completely positive map. You might think it is enough for us to
consider evolution maps which keep ρ positive (and not the stronger demand that ρ⊗ 1C is
positive). As an example which shows that this is a real condition: The transpose operation
ρ→ ρT is positive but not completely positive. From the point of view we have taken, that
we are describing the evolution of a subsystem which interacts with a larger system, this
demand (that extending the evolution by doing nothing to the larger system should still be
positive) is quite natural. It is a fancy theorem (the Kraus representation theorem)3 that
any completely positive map may be written in the form (5).

A little more on Kraus superoperators

To see a little more explicitly where these operators come from, imagine again that H =
HA ⊗HE and we begin in an initial unentangled state

ρ = ρA ⊗ |0〉E 〈0|E.

(Note that we’re not going to keep track of the state of the environment – in fact, that’s its
point in life. So we don’t need an accurate model of what it’s doing, just an accurate model
of what it’s doing to our system. This is why we can make this simplifying step of acting
just on |0〉E.) Time evolution acts by

ρ→ UρU†

3where ‘fancy’ means ‘we will not prove it here’
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where U = e−iHt is the (unitary!) time evolution operator on the whole system. This means
it acts on the reduced density matrix for subsystem A (namely ρA ≡ tr HEρ) by

ρA → ρ′A = tr HEUρU†.

More explicitly

(ρ′A)mn =
∑
µkl

Umµ,k0ρklU
†
l0,nµ

with
Umµ,kν = A〈m| ⊗ E〈µ|U |k〉A ⊗ |ν〉E .

So we have
ρA → ρ′A = tr HEUρU† =

∑
µ

MµρAM†
µ

with
Mµ = E〈µ|U |0〉E

From this we see that∑
µ

M†
µMµ =

∑
µ

E〈0|U† |µ〉E E〈µ|︸ ︷︷ ︸
=1E

U |0〉E = 1A

while∑
µ

MµM
†
µ =

∑
µ

E〈µ|U |0〉E E〈0|U† |µ〉E = something we can’t determine without more information.

A useful expression for the time evolution for extracting Mµ is

U |ϕ〉A ⊗ |0〉E =
∑
µ

Mµ ⊗ 1E |ϕ〉A ⊗ |µ〉E =
∑
µ

Mµ |ϕ〉A ⊗ |µ〉E . (6)

This will guarantee that

ρ→ tr HE

(
UAE |φ〉A ⊗ |0〉E A〈φ| ⊗ E〈0|U†AE

)
=
∑
µ

MµρM†
µ .

Note that K is not unique: Making a change of basis on the environment E doesn’t change
our evolution of ρ, but will change the appearance of K.

The phase-damping channel

Let us consider an example of how a qbit may be coupled to an environment, where we
can see decoherence in action. It has the fancy name of “the phase-damping channel”. We’ll

2-12



model the environment as a 3-state system HE = span{|0〉E , |1〉E , |2〉E}, and suppose that
the result of (linear, unitary) time evolution of the coupled system over a time dt acts by

UAE |0〉A⊗|0〉E =
√

1− p |0〉A⊗|0〉E+
√
p |0〉A⊗|1〉E , UAE |1〉A⊗|0〉E =

√
1− p |1〉A⊗|0〉E+

√
p |1〉A⊗|2〉E ,

4 5 Notice that the system A of interest actually doesn’t evolve at all in this example!

A bit of interpretation here is appropriate. Suppose the two states we are considering
represent positions some heavy particle in outer space, |0〉A = |x0〉 , |1〉A = |x1〉, where
x1 and x2 are far apart; we’d like to understand why we don’t encounter such a particle
in a superposition a |x0〉 + b |x1〉. The environment is described by e.g. black-body photons
bouncing off of it (even in outer space, there is a nonzero background temperature associated
to the cosmic microwave background). It is reasonable that these scatterings don’t change
the state of the heavy particle, because it is so heavy. But photons scattering off the particle
in different positions get scattered into different states, so the evolution of the environment
should be distinct for the two different states of the heavy particle A. The probability p is
determined by the scattering rate of the photons: how long does it take a single photon to
hit the heavy particle.

To find the Kraus operators, Mµ, we can use the expression:

UAE |φ〉A ⊗ |0〉E =
2∑

µ=0

(Mµ ⊗ 1B) |φ〉A ⊗ |µ〉E .

We can read off the Ms:

M0 =
√

1− p1A, M1 =
√
p |0〉A A〈0|, M2 =

√
p |1〉A A〈1|.

So the reduced density matrix evolves according to

ρA → K(ρA) = (1− p)ρ + p

(
ρ00 0
0 ρ11

)
=

(
ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)

Suppose we wait twice as long? Then the density matrix becomes

(?) K2(ρA) = K(K(ρA)) =

(
ρ00 (1− p)2ρ01

(1− p)2ρ10 ρ11

)
.

You see where this is going. After a time t ≡ n · dt, the density matrix is

ρA(t) = Kn(ρA) =

(
ρ00 (1− p)nρ01

(1− p)nρ10 ρ11

)
=

(
ρ00 e−γtρ01

e−γtρ10 ρ11

)
4Le Bellac (whose judgement is usually impeccable and I don’t think this is his fault) calls this operation

a ‘quantum jump operator’; this seems like totally unnecessary and confusing jargon to me. The reason
there is any kind of ‘jump’ is because we are waiting a finite amount of time, dt.

5What if the initial state of the environment is something other than |0〉E? We don’t need to know.
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– as promised the off-diagonal terms decay exponentially in time, like e−γt, with γ = − log(1−
p)/dt ∼ p/dt (the last step is true if p is small using the Taylor expansion of log(1 −
p)). Nothing happens to the diagonal elements of ρ in this basis. The choice of special
classicalizing basis was made when we said that the states |0〉 and |1〉 of the qbit caused the
environment to evolve differently.

So notice that it is the scattering rate with the environment (via p) that determines the
decoherence rate γ – it’s just the frequency with which the system interacts with its environ-
ment. Getting hit by these photons (which don’t do anything to it!) happens much much
faster than anything else that happens to the particle. This is why Schrödinger’s cat seems
so absurd: it gets hits with lots photons (or other aspects of its environment with similar
effect) before we even look at it.

I must comment on a crucial assumption we made at the step (?) where we iterated the
evolution K. In stating the model above, I’ve only told you how to evolve the whole system
if the environment is in the ground state |0〉E. In order for (?) to be the correct rule for
evolving twice as long, we must assume that the environment relaxes to its ground state
over the time dt. It is natural that the environment would forget what it’s been told by the
system in such a short time if the environment is some enormous thing. Big things have fast
relaxation times.

[End of Lecture 14]

Under unitary time evolution that we’ve seen for closed systems, the time dependence
is always periodic: it always comes back to its initial state eventually, and never forgets.
How does a quantum system relax to its groundstate (like we assumed in our model of the
environment)? A model of this is given by our second example, next:

Amplitude-damping channel

[Preskill 3.4.3, Le Bellac §15.2.4] This is a very simple model for a two-level atom, coupled
to an environment in the form of a (crude rendering of a) radiation field.

The atom has a groundstate |0〉A; if it starts in this state, it stays in this state, and the
radiation field stays in its groundstate |0〉E (zero photons). If it starts in the excited state
|1〉A, it has some probability p per time dt to return to the groundstate and emit a photon,
exciting the environment into the state |1〉E (one photon). This is described by the time
evolution

UAE |0〉A ⊗ |0〉E = |0〉A ⊗ |0〉E
UAE |1〉A ⊗ |0〉E =

√
1− p |1〉A ⊗ |0〉E +

√
p |0〉A ⊗ |1〉E .

The environment has two states so there are two Kraus operators, which (using (6)) are

M0 =

(
1 0
0
√

1− p

)
,M1 =

(
0
√
p

0 0

)
.
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Unitary of the evolution of the whole system is recovered because

M†
0M0 + M†

1M1 =

(
1 0
0 1− p

)
+

(
0 0
0 p

)
= 1.

So the density matrix evolves according to

ρ→ K(ρ) = M0ρM†
0 + M1ρM†

1

=

(
ρ00

√
1− pρ01√

1− pρ10 (1− p)ρ11

)
+

(
pρ11 0

0 0

)
=

(
ρ00 + pρ11

√
1− pρ01√

1− pρ10 (1− p)ρ11

)
After n steps (in time t = n · dt), the 11 matrix element has undergone ρ11 → (1− p)nρ11 =
e−γt, again exponential decay with rate − log(1−p)/dt ∼ p/dt (for small p). Using ρ00+ρ11 =
1, the whole matrix is:

Kn(ρ) =

(
1 + (1− p)nρ11 (1− p)n/2ρ01

(1− p)n/2ρ10 (1− p)nρ11

)
.

If you wait long enough, the atom ends up in its groundstate:

lim
n→∞

Kn(ρ) =

(
ρ00 + ρ11 0

0 0

)
= |0〉A 〈0|A .

This example of open-system evolution takes a mixed initial state (say some incoherent sum
of ground and excited state) to a (particular) pure final state. (Note that the off-diagonal
elements (the ‘coherences’) decay at half the rate of ρ11 (the population of the excited state).

We’ll see some more examples of couplings to the environment on HW 7.

2.3.3 Interpretations of quantum mechanics and the origin of the Born rule

[Weinberg 3.7] The measurement axiom 4 we gave at the beginning of this class is called the
Copenhagen interpretation, and is due to Max Born with much philosophical baggage added
by Niels Bohr. Max Born’s version can be called the “shut up and calculate” interpretation
of quantum mechanics, and Niels Bohr’s version can be called the “shut up and calculate”
interpretation minus the shutting-up part6. It involves a distinction, some sort of boundary,
between quantum (the system) and classical (the measuring device). The latter involves
non-linear evolution which is not described within quantum mechanics.

In the discussion above we have seen that it is possible to improve upon this situation by
including the effects of decoherence. We have, however, not derived the Born rule (that in
a measurement of an observable A =

∑
a a |a〉 〈a| in the state ρ, we get the answer a with

6The first part of this apt description is due to David Mermin and the second is due to Scott Aaronson.
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probability tr ρ |a〉 〈a|). There are two still-viable (classes of) points of view on how this
might come about, which can generally be called ontological and epistemological. The crux
of the issue is how we think about the wavefunction: is it a complete description of all there
is to know about physical reality? or is it a statement about (someone’s, whose?) knowledge
(about reality?)?

The meaning attached to probability can itself be divided along the same lines (of ontology
and epistemology) as QM interpretations, in this context called frequentist and Bayesian
notions of probability theory. The frequentist way of thinking about probability is that we
imagine we have a large collection of identically-prepared copies of the system; a statement
about probability then is a statement about what fraction of these copies realize the outcome
in question. This definition is great when it is available, but there are some situations where
we’d like to use the machinery of probability theory but cannot imagine making an ensemble
(e.g., the increase in global temperatures on the Earth is probably due to the behavior of
humans). Then we are forced to use a Bayesian interpretation, which is a statement about
the most reasonable expectations given current information.

The latter (Bayesian) point of view is appealing because it would instantly remove any
issue about the ‘collapse of the wavefunction’. If the wavefunction were merely a book-
keeping device about the information held by an observer, then of course it must be updated
when that observer makes a measurement! 7 However, this point of view (sometimes called
quantum Bayesianism) requires us to give up the notion of an objective state of the system
and allows the possibility that we might get in trouble in our accounting of the states kept
in the books of different observers. I will not say more about it but it is interesting.

The former point of view (that the wavefunction is real and has all the possible information)
leads pretty directly to the “many worlds interpretation”. This is an absurd-seeming name
given to the obviously-correct description of the measurement process that we’ve given in
subsection 2.2: as a result of interactions, the state of the system becomes entangled with
that of the measuring device, and with the air in the room, and with the eyeballs and brain
of the experimenter. So of course when the experimenter sees the needle of the measuring
device give some answer, that is the answer. That is the answer on the observer’s branch of
the wavefunction8:

|Ψ〉universe =
1√
2

(∣∣∣ 〉
+ | 〉

)
⊗

∣∣∣∣∣
〉

wait→ 1√
2

∣∣∣ 〉
⊗

∣∣∣∣∣
〉

+
1√
2
| 〉⊗

∣∣∣∣∣
〉

7 For example, J. B. Hartle, Quantum mechanics of individual systems, Am. J. Phys. 36 (1968) 704
makes the claim that a quantum “state is not an objective property of an individual system, but is that
information, obtained from a knowledge of how the system was prepared, which can be used for making
predictions about future measurements . . . The ‘reduction of the wave packet’ does take place in the
consciousness of the observer, not because of any unique physical process which takes place there, but only
because the state is a construct of the observer and not an objective property of the physical system.”

8You may (should) recognize the observer depicted here from xkcd. The cat pictures are of unknown
provenance.
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As we have seen above, the inevitable phenomenon of decoherence picks out particular
classical states, determined by the coupling of the system to its environment, which are the
ones that are observed by a classical observer, i.e. by someone who fails to keep track of
all the detailed correlations between the system and every speck of dust and photon in its
environment.

Does this solve all the problems of interpreting measurement in QM? No, we haven’t really
derived the Born rule for how we should interpret matrix elements of operators in terms of
probabilities.

Can we derive the Born rule from the first three Axioms of QM? If not, something additional
to QM is required, even within the many-worlds interpretation. The answer is ‘sort of’.

Suppose we adopt a frequentist interpretation, and give ourselves many (N � 1, non-
interacting) copies of our quantum system.9 (The question of how to prepare such a thing
consistent with no-quantum-Xerox we will ignore here.) So the state of the whole system,
in H⊗N , is

|Ψ0〉 =

(∑
n1

cn1 |n1〉

)
⊗

(∑
n2

cn2 |n2〉

)
⊗· · ·⊗

(∑
nN

cnN |nN〉

)
=

∑
n1,n2...nN

cn1cn2 · · · cnN |n1, n2 · · ·nN〉 .

We assume for convenience that these states are ON: 〈n′1, n′2, ...n′N |n1, n2, ...nN〉 = δn′1n1
δn′2n2

· · · δn′NnN ,
so normalization is guaranteed by

∑
n |cn|2 = 1.

Let us further assume that the states |ns〉 are classical states, into which the system deco-
heres. (We are assuming that each of the copies of the system is coupled to an environment
in the same appropriate way.) This means that after a short time, the state of the combined
system will be

|Ψ1〉 =
∑

n1,n2...nN

cn1cn2 · · · cnN ei(ϕ1+ϕ2+...+ϕN ) |n1, n2 · · ·nN〉

where ϕs are totally random phases, which when we average over them will set to zero any
off-diagonal matrix elements:

→ ρ =
∑

n1,n2...nN

|cn1cn2 · · · cnN |2 |n1, n2 · · ·nN〉 〈n1, n2 · · ·nN | .

Now an observer who is part of this system will find herself after a while on some branch
of the wavefunction in some definite basis state, |n1, n2...nN〉 (this is what decoherence does
for us). If she finds Nn copies in the state n, she will sensibly declare that the probability
that any one copy is in state n is

Pn = Nn/N.

9This discussion is due to J. Hartle, 1968.
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Notice that
∑

nNn = N guarantees that this distribution is normalized. This is actually what
people do to measure probability distributions for outcomes of quantum systems in practice.
To be absolutely sure of the probability distribution it is necessary to take N →∞.

If we are willing to accept part of the measurement axiom, we can now go the rest of the
way. (After all, we have to say something about what we should do with the state vector to
get physics out of it.) In particular, let’s accept the following Weak version of Axiom 4:

If the state vector is an eigenstate of an observable A with eigenvalue a, then for sure the
system has the value a of that observable.

(Pretty reasonable.) Now consider the family of hermitean operators Pn called frequency
operators, defined to be linear and to act on the basis states by

Pn |n1...nN〉 ≡
Nn

N
|n1...nN〉 ,

where as above Nn is the number of the indices n1..nN which is equal to n.

So Born’s rule would be derived from the weak axiom 4 above if we could show that

Pn |Ψ1〉
?
=|cn|2 |Ψ1〉 .

This is not true. But it becomes truer as N gets larger:

||
(
Pn − |cn|2

)
|Ψ1〉 ||2 =

1

N
|cn|2

(
1− |cn|2

)
≤ 1

4N
. (7)

For a derivation of this statement, see Weinberg page 91. Weinberg mentions an important
hidden loophole here: the fact that the 2-norm || |ψ〉 ||2 ≡ 〈ψ|ψ〉 is what appears in the Born
rule in this derivation is a consequence of the fact that we used it in measuring the distance
between states in (7).

There is a lot more to say about this subject, and there probably always will be, but we
have to shut up and calculate now.

2.4 Path integrals

[Shankar, Chapter 8 and 21; Feynman; Kreuzer, Chapter 11]

The path integral will offer us another route to classical physics.

The path integral formulation of quantum mechanics is the ultimate logical conclusion from
the double-slit experiment. The basic lesson from that discussion is that the two paths the
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particle could have taken interfere. More precisely: to find the amplitude for some quantum
process (whose absolute-square is the probability), we must sum over all ways that it can
occur.

If we send a quantum particle through a wall with two little holes, we obtain a probability
amplitude for where it will land which is obtained by summing the contributions from each
of the holes.

one wall, two slits: ψ1(y) =
1√
2

(ψfrom hole 1(y) + ψfrom hole 2(y)) .

Now suppose that instead of the detector, we put another wall with two holes. We compute
the probability amplitude at each of the spots in the same way. (there is an important issue
of normalization, to which we’ll return.) Let’s figure out the probability amplitude for a
detector placed after the second wall, like this:

Two walls two slits:

ψ2(y) =
1√
2

(ψfrom hole 1 of wall 2(y) + ψfrom hole 2 of wall 2(y))

Further we can write

ψfrom hole i of wall 2(y) = U
(2)
yi ψat hole i of wall 2

where U (2) is an appropriate evolution operator. In turn

ψat hole i of wall 2 =
∑
j

U
(1)
ij ψat hole j of wall 1 .

Altogether, we are adding together a bunch of complex numbers in a pattern you have seen
before: it is matrix multiplication:

ψ2(y) =
∑
j,k

U
(2)
ij U

(1)
jk ψk

where
U

(α)
ij = the contribution i from hole j of wall α

What this formula is saying is that the wavefunction at the final detector is constructed by
a sum over paths that the particle could have taken. More dramatically, it is a sum over all
the possible paths. Don’t forget that the contribution from each path is a complex number.

If we had one wall with three holes we would sum the contributions from each of the three
holes.

one wall, three slits: ψ(y) =
1√
3

(ψfrom hole 1 + ψfrom hole 2 + ψfrom hole 3) .
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You can imagine adding more holes. And you can imagine more walls.

Now imagine that the world is totally full of walls and that all the walls are totally full of
holes. Even if there is no wall, we must sum over the paths. 10

[End of Lecture 15]

10This wonderful device is due to Feynman. Take a look at Volume III of the Feynman Lectures. A more
elaborate treatment appears in Feynman and Hibbs, Quantum Mechanics and Path Integrals.
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2.4.1 A more formal statement of the path integral formulation

It will turn out that the previous formulations of quantum mechanics is to Hamiltonian
mechanics as the path integral formulation is to Lagrangian mechanics (for a particle in
1d, this is L = pẋ − H). Just as in the classical case, a big advantage of the Lagrangian
formulation is that symmetries are sometimes more explicit.

[Shankar Chapter 8] Here is a statement of the rules. Suppose we want to construct the
propagator for a 1d particle:

U(x, t;x′, 0) ≡ 〈x|U(t) |x′〉 .

We assume that the hamiltonian is time-independent, so the time evolution operator is
U(t) = e−iHt/~. A path integral representation of U is obtained by:

1. Find all paths x(s) the particle could take from x′ to x in time t.

2. For each path, evaluate the action S[x] =
∫ t

0
dsL(x(s), ẋ(s)). For a free particle, this

is S[x] =
∫ t

0
ds
(

1
2
mẋ2 − V (x(s))

)
.11

3. Add them up:

U(x, t;x′, 0) = A
∑

all paths, x(s)

e
i
~S[x(s)] . (8)

A is a normalization constant. The paths in the sum begin at x′ at s = 0 and end at
x at s = t.

Notice that this was what ~ was designed for all along: it is the ‘quantum of action’, the
basic unit of action.

2.4.2 A derivation of the path integral from the canonical formalism of QM

[Kreuzer, chapter 11.2, Shankar chapter 21.1, 8.5]

Let us consider the propagator in a possibly-more general quantum system – the amplitude
for the system to transition from state α at time 0 to state β at time t:

U(β, t;α, 0) ≡ 〈β, t|e−iHt |α, 0〉 .
11 For those of you who have been classical-mechanics-deprived, the purpose-in-life of the action is that it

is extremized by the classical path. That is, Hamilton’s equations are satisfied by the path of least (or most)
action:

0 =
δS[x]

δx(s)
∝ mẍ+ ∂xV.
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In the previous expression, I’ve assumed for simplicity that H is time-independent. Here we
just require that we have a resolution of the identity of the form

1 =

∫
dα |α〉 〈α|.

(If you want, think x wherever you see α, but it’s much more general; for example, it could
be a discrete variable.)

We’re going to chop up the time evolution into a bunch (N) of little steps of size dt:
t = Ndt.

e−iHt = e−iHdte−iHdte−iHdt · · · e−iHdt︸ ︷︷ ︸
N times

=
N∏
i=1

e−iHdt

The basic strategy is to insert lots of resolutions of the identity in the time evolution
operator. You should think of this as placing screens with infinitely many slits; the sum over
states is the sum over which slit the particle goes through. Then

e−iHt

= e−iHdt
∫
dαN−1 |αN−1〉 〈αN−1|e−iHdt

∫
dαN−2 |αN−2〉 〈αN−2|e−iHdt · · ·

· · ·
∫
dα2 |α2〉 〈α2|e−iHdt

∫
dα1 |α1〉 〈α1|e−iHdt

=
N−1∏
i=1

(∫
dαie

−iHdt |αi〉 〈αi|
)

We can regard the collection {αi ≡ α(ti)} as parametrizing the possible ‘paths’ that the
system can take as time passes. We will have to take a limit N → ∞, dt → 0; sometimes
this is subtle.

The propagator is then

U(β, t;α, 0) =

∫ N−1∏
i=1

dαi〈αi|e−iHdt |αi−1〉

with α0 = α and αN = β.

What happened here? Let’s take the case where we divide the interval up into two parts,
N = 2. So we’re using

e−iH(ta−tb) = e−iH(ta−t)e−iH(t−tb)

which follows from the deep fact ta − tb = (ta − t) + (t− tb). Now stick a ‘wall full of holes,’
1 =

∫
dx |x〉 〈x| in between the two factors:

e−iH(ta−tb) =

∫
dxe−iH(ta−t) |x〉 〈x|e−iH(t−tb)
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and now take matrix elements:

U(xb, tb;xa, ta) ≡ 〈xb|e−iH(tb−ta) |xa〉
=

∫
dx〈xb|e−iH(tb−t) |x〉 〈x|e−iH(t−ta) |xa〉

=

∫
dxU(xb, tb;x, t)U(x, t;xa, ta). (9)

In words: the amplitude to propagate from xa, ta to xb, tb is equal to the sum over x of
amplitudes to get from xa, ta to x and from there to xb, tb, all in time tb − ta.

To be more concrete, let’s think about a 1d particle in a potential. The Hamiltonian is

H =
p2

2m
+ V (x) ,

and a useful resolution of the identity is in position space
∫
dx |x〉 〈x| = 1,x |x〉 = x |x〉. We

must consider the amplitude from which U is made:

U(xj+1, dt;xj, 0) = 〈xj+1|e−iHdt |xj〉 = 〈xj+1|e
−i
(

p2

2m
+V (x)

)
dt
|xj〉 . (10)

Using the identity
eAeB = eA+B+ 1

2
[A,B]+...

and the fact that the time step dt is small, we can split up the evolution:

e−iHdt = e−idt
p2

2m e−idtV (x) +O(dt2)

Then we can act with V (x) on the right ket and have for the amplitude

〈xj+1|e−iHdt |xj〉 = 〈xj+1|e−
i
~dt

p2

2m |xj〉 e−
i
~dtV (xj)

using the fact that V (x) is diagonal in position space.

[from Herman Verlinde]
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Next we turn the p2 into a number by further inserting a resolution of the identity in
momentum space: 1 =

∫
dp |p〉 〈p|,p |p〉 = p |p〉.

e−i
p2

2m
dt =

∫
dp e−idt

p2j
2m |pj〉 〈pj|

Putting these things together, the propagator is:

U(xf , t;x0, 0) =

∫
[dpdx]

N−1∏
j=1

e−idt
p2(tj)

2m
−idtV (xj)〈xj|pj〉〈pj|xj−1〉

where we defined the path-integral measure

[dpdx] ≡
N−1∏
j=1

dp(tj)dx(tj)

2π
.

The integral has a boundary condition that x(tN) = xf , x(t0 = 0) = x0. Now we use

〈p|x〉 =
1√
2π
e−ipx/~

to write the path integral as:

U(xf , t;x0, 0) =

∫
[dxdp]

N−1∏
j=1

e
i
~dtpj(xj−xj−1)− i

~dtH(pj ,xj)

'
∫

[dxdp] e
i
~
∫
dt(pẋ−H(p,x)) =

∫
[dxdp] e

i
~S . (11)

This is a sum over the configurations in phase space, weighted by e
i
~S, the action in units of

Planck’s constant.

The information about the initial and final states are in the boundary conditions on the
path integral: we only integrate over paths where x(t = 0) = x0, x(tj = t) = xf .

We can turn this into an integral just over real-space configurations (as described above),
since the ps only enter quadratically in the exponent. The Gaussian integrals we need to do
are:

N−1∏
i=1

∫ ∞
−∞

dpi
2π~

e−
idt
2m~p

2
i−

i
~pi(xi−xi−1) =

N−1∏
i=1

√
m

2πidt
e

im(xi−xi−1)2

2~dt .

You can check that this gives the formula claimed above in (8), with
∑

all paths · ≡
∏N−1

i=1 dxi·.

[Beware factors of
√

2π in the measure. Exercise: restore all factors of ~.]
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The path integral solves the Schrödinger equation

Consider the wave function ψ(y, t) = 〈y|ψ(t)〉. y here is just a value of x.

At the next time-step t+ dt it evolves to

ψ(x, t+ dt) = 〈x|U(dt) ·︸︷︷︸
1=
∫
dy|y〉〈y|

|ψ(t)〉 =

∫
dy 〈x|U(dt) |y〉︸ ︷︷ ︸

U(x,t+dt;y,t)

ψ(y, t). (12)

So we need the propagator for one time step, which we have seen in (10). Let’s redo the
manipulation which gets rid of the p integrals for just this one time step:

U(x, t+ dt; y, t) = 〈y|e−
i
~

p2

2m |x〉 e−
i
~dtV (x) =

∫
dp〈y|p〉〈p|x〉e−

i
~dt

p2

2m e−
i
~dtV (x)

=

∫
dp

2π
e−ipy+ipxe−idt

p2

2m e−idtV (x) =

√
m

2πidt
e

im
2~dt (x−y)2−idtV (x) .

Now let’s plug this into (12). Change integration variables y = x+ η, dy = dη.

ψ(x, t+ dt) =

∫
dη

1

Z
e

idt
~

(
m( η

dt)
2
−V (x,t)

)(
ψ(x) + ηψ′(x) +

1

2
η2ψ′′(x) + ...

)

The normalization constant is Z =
√

2πidt
m

. So, keeping terms to first order in dt and doing

the gaussian integrals over η, we have

ψ(x, t) + dt∂tψ(x, t) = ψ(x, t)− idt

~
V (x, t)ψ(x, t)− ~dt

2im
∂2
xψ(x, t).

This means

−~
i
∂tψ = Hψ.

So here’s a fancy way to think about the path integral: it is a formal solution of the
Schrödinger equation.
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2.4.3 Classical mechanics (and WKB) from stationary-phase configurations

Aside: The Saddle Point Method
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Figure 1: Top: f(x) = (x2−1)2− 1
2x

3.

Bottom: e−Nf(x) with N = 10.

Consider an integral of the form above

I =

∫
dx e−Nf(x)

where N � 1 is a big number and f(x) is a smooth
function. As you can see from the example in the
figure (where N is only 10), e−Nf(x) is hugely peaked
around the absolute minimum of f(x), which I’ll call
x0. We can get a good approximation to the integral
by just considering a region near x = x0, and Taylor
expanding f(x) about this point:

f(x) = f(x0) +
1

2
(x− x0)2f ′′(x0) + ...

where there’s no linear term since x0 is a critical point,
and we assume a minimum f ′′(x0) > 0. It is also
important that x = x0 is in the range of integration.
Then

I =

∫
dxe−Nf(x) ≈

∫
dxe−N(f(x0)+ 1

2
(x−x0)2f ′′(x0)+...)

= e−Nf(x0)

∫
dye−

N
2
f ′′(x0)y2+... ≈ e−Nf(x0)

√
2π

Nf ′′(x0)
.

The important bit is that the integral is well-approximated by e−Nf(x0), i.e. just plugging
in the value at the critical point. (Actually, for values of N as small as I’ve chosen in the
example, the bit with the f ′′ is important for numerical accuracy; for the example in the
figure, including this factor, the saddle point method gives

∫ 2

−2
dxe−Nf(x) = 206.7, while

numerical integration gives 209.3. Without the gaussian integral correction, saddle point
gives 816.6. For values of N ∼ 1024 we can just keep the leading term.)

Now, I claim that this kind of trick also works for integrals of the form

I =

∫
dxeiNf(x) . (13)

Then it has a different name: ‘stationary phase’. The description of why it works is slightly
different. Recall that

∫ 2π

0
dθeiθ = 0; thinking of complex numbers as 2d vectors, this vanishes

because we are adding up arrows pointing in all directions. They interfere destructively.
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If f ′(x) 6= 0, the phase in (13) is rapidly varying as x varies, and the phase goes around
many times, and the sum of arrows goes nowhere. Only when f ′(x) = 0 (when the phase
is stationary) do the arrows point in the same direction and add together. So the biggest
contributions to the integral come from the values of x where f ′(x) = 0. The contribution
is proportional to eiNf(x0).

The analog of the gaussian integral correction above is now:∫
dueiαu

2

=

√
π

α
eiπ/4.

(You may recall this π/4 from WKB.)

The thing that will play the role of the large number N will be 1/~. The stationary-phase
approximation in this context is called the semi-classical approximation.
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Calculus of Variations

To apply the previous discussion to the path integral, we need to think about functionals –
things that eat functions and give numbers – and how they vary as we vary their arguments.

The basic equation of the calculus of variations is:

δx(t)

δx(s)
= δ(t− s).

This the statement that x(t) and x(s) for t 6= s are independent. From this rule and
integration by parts we can get everything we need. For example, let’s ask how does the
potential term in the action SV [x] =

∫
dtV (x(t)) vary if we vary the path of the particle.

Using the chain rule, we have:

δSV =

∫
dsδx(s)

δ
∫
dtV (x(t))

δx(s)
=

∫
dsδx(s)

∫
dt∂xV (x(t))δ(t− s) =

∫
dtδx(t)∂xV (x(t)).

We could rewrite this information as :

δ
∫
dtV (x(t))

δx(s)
= V ′(x(s)).

12 What about the kinetic term ST [x] ≡
∫
dt1

2
mẋ2? Here we need integration by parts:

δ

δx(s)
ST [x] =

2

2
m

∫
dtẋ(t)∂t

δx(t)

δx(s)
= m

∫
dtẋ(t)∂tδ(t−s) = −m

∫
dtẍ(t)δ(t−s) = −mẍ(s).

12If you are unhappy with thinking of what we just did as a use of the chain rule, think of time as taking
on a discrete set of values ti (this is what you have to do to define calculus anyway) and let x(ti) ≡ xi. Now
instead of a functional SV [x(t)] we just have a function of several variables SV (xi) =

∑
i V (xi). The basic

equation of calculus of variations is even more obvious now:

∂xi
∂xj

= δij

and the manipulation we did above is

δSV =
∑
j

δxj∂xj
SV =

∑
j

δxj∂xj

∑
i

V (xi) =
∑
j

∑
i

δxjV
′(xi)δij =

∑
i

δxiV
′(xi).
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So: the stationary phase condition for our path integral is

0 = δS =

∫
dtδx(t)

δS

δx(t)

Since this must be true for all δx(t), this is equivalent to

0 =
δS

δx(t)
,

which for the free particle is

0 =
δS

δx(t)
= −mẍ(t)− V ′(x(t)) (14)

which you recognize as Newton’s law.

In classical mechanics, we just care about one trajectory, the one satisfying the classical
equations of motion, (14). In QM, we must sum over all trajectories, but the trajecto-
ries satisfying the classical equations of motion are special: the classical paths (paths near
which the variation of the action is small compared to ~) make contributions that interfere
constructively. Sometimes they dominate.

The approximation we get to the wave function from stationary phase is the WKB approx-
imation:

ψWKB(x, t) =
C√
|p(x)|

e
i
~S(x,t) .

In this expression,

S(x, t) =

∫ t

0

dsL(x, ẋ)|x|x(0)=x0,x(t)=x ,

p is determined by x, ẋ (as p = δS
δx(t)

), and C is a normalization constant.

I have described this in terms of a solution x with fixed boundary conditions at 0, t; it is
more useful to have an expression for the wave function of a definite energy. This is obtained
as follows (basically another Legendre transform, using L = pẋ−H):

S(x, t) =

∫ t

0

ds

(
p
dx

dt
−H

)
|x|x(0)=x0,x(t)=x =

∫ x

x0

p(x′)dx′ − E(t− t0)

Here E is given by E = H(x, p) = p2

2m
+ V (x). We can solve this for p(x):

p(x) ≡
√

2m (E − V (x))

so the WKB wave function is

ψWKB(x, t) =
C√
|p(x)|

e
i
~
∫ x
x0
p(x′)dx′−Et

.

which you have seen in Chapter 8 of Griffiths. (You can also get this expression by plugging

the ansatz ψ(x) = e
i
~S(x) into the Schrödinger equation and solving order-by-order in ~.)

[End of Lecture 16]
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