University of California at San Diego — Department of Physics — Prof. John McGreevy

Quantum Mechanics C (Physics 130C) Winter 2015
Assignment 2

Posted January 14, 2015 Due 11am Thursday, January 22, 2015

Please remember to put your name at the top of your homework.
Go look at the Physics 130C web site; there might be something new and interesting there.

Reading: Preskill’s Quantum Information Notes, Chapter 2.1, 2.2.

1. More linear algebra exercises.

(a) Show that an operator with matrix representation
1
s L(11
2\11

(b) Show that a projector with no kernel is the identity operator.

is a projector.

2. Complete sets of commuting operators. In the orthonormal basis {|n)},=123,
the Hermitian operators A and B are represented by the matrices A and B:

a0 0 0 ib 0
A=|0a 0], B=|-1b00],
00 —a 0 0b

with a, b real.
(a) Determine the eigenvalues of B. Indicate whether its spectrum is degenerate or
not.
(b) Check that A and B commute. Use this to show that A and B do so also.

(¢) Find an orthonormal basis of eigenvectors common to A and B (and thus to A
and B) and specify the eigenvalues for each eigenvector.

(d) Which of the following six sets form a complete set of commuting operators for
this Hilbert space? (Recall that a complete set of commuting operators allow us
to specify an orthonormal basis by their eigenvalues.)

{A}; {B}; {A,B}; {4%,B}; {A B*}; {4° 5%}


http://physics.ucsd.edu/~mcgreevy/w14/
http://www.theory.caltech.edu/~preskill/ph219/chap2_13.pdf

3. A positive operator is one whose eigenvalues are all positive. Show that sum of positive
hermitian operators is positive, even if they don’t commute.

4. Measurement and time evolution.

Consider a quantum system governed by a Hamiltonian H:
]:I|n) =FE,ln), n=0,1,2,...,

with (n|m) = 6, and non-degenerate energy levels. In addition, A is an observable of
this system such that
Alay) = aglan), a=0,1,2,...,

with (aq|ag) = 4; the a, are also non-degenerate. Finally, [A, H] # 0.

(a) Prior to measurement of A, the system is in state |n). What is the probability
P,(ay) that measurement of A will yield a,?

(b) If the preceding measurement were carried out at time ¢ = 0 and yielded the result
aq, what is the state of the system immediately following the measurement, i.e.
what is |¢(t = 0))?

(c) Following the ¢ = 0 measurement of A that yielded a,, A is again measured at
t > 0. What is the probability P(a,,t) that the value a, will again be found?
Express your answer in terms of the probabilities P, (aq).

(d) Now let H be the Hamiltonian for the 1-dimensional harmonic oscillator with nat-
ural frequency wy, and set t = 27 /wy. What is the numerical value of P(aq, 27 /wy)?

Note: None of your answers should contain Aor H.

The following three problems form a triptych, on the subject of resolving the various
infinities involved in the quantum mechanics of a particle on the real line. There are
two such infinities: one is the fact that the real line goes on forever; this is resolved in
problem 5. The other is the fact that in between any two points there are infinitely
many points; this is resolved in problem 6. In problem 7 we resolve both to get a
finite-dimensional Hilbert space.

5. Particle on a circle.

Consider a particle which lives on a circle:



That is, its coordinate = takes values in [0,27R] and we identify z ~ = + 27 R. The
operator p generates translations of the particle’s position, just as in the case of the
particle on the line.

(a) Let’s assume that the wavefunction of the particle is periodic in z:

Y(x+27R) = (x) .
What set of values can its momentum (that is, eigenvalues of the operator p =
—1h0,) take?
[Hint: demand that the translation operator T'(2rR) = €277 acts like the identity

operator.]

(b) Recall that the overall phase of the state vector is not physical data. This suggests
the possibility that the wavefunction might not be periodic, but instead might
acquire a phase when we go around the circle:

Y(x + 27 R) = %y (z)
for some fixed . In this case what values does the momentum take?

6. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the discrete
values © = na,n € Z where a is some unit of length and n is an integer. We’ll call the
corresponding position eigenstates |n). The Hilbert space is still infinite-dimensional,
but at least it’s countably infinite.

Now only translation operators T™ = €l which translate the particle by integer
multiples of a map the Hilbert space to itself. In this problem we will determine: what
is the spectrum of the momentum operator p in this system?

(a) Consider the state
1 )
0) = — ) e™|n).
N %

Show that |6) is an eigenstate of 7. Why do I want to call # momentum?

(b) What range of values of 6 give different states |#)? [Recall that n is an integer.]

7. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we’ll wrap the lattice
around a circle, in the following sense. Its position can take only the discrete val-
ues = a,2a,3a,..., Na (where, again, a is some unit of length and again we’ll call
the corresponding position eigenstates |n)). Suppose further that the particle lives on
a circle, so that the site labelled z = (N + 1)a is the same as the site labelled z = a.
We can visualize this as in the figure:
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In this case, the Hilbert space has finite dimension (N).

Consider the following N x N matrix representation of a Hamiltonian operator (a is a

constant):
2 -10 0 O 0 —1
-1 2 -10 0 0 0
| 0 -12 -10 0 0
H=— 0 0 -12 -1 0 0%YN
a S .
00 0 0 O 2 —1
-1 0 0 0 O -1 2
N )

(a) Convince yourself that this is equivalent to the following: Acting on an N-
dimensional Hilbert space with orthonormal basis {|n),n = 1,..., N}, H acts
by

a’Hln) =2|n) — |n+1) —|n—1), with |[N +1)~|1)
that is, we consider the arguments of the ket to be integers modulo N.

(b) What are the symmetries of this system?

[Hint: what is [H,T] where 7' is the ‘shift operator’ defined by T : |n) — [n+1)?]

Consider again the state

1 <,
|«9)=\/—an::16”‘ In).
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Show that |#) is an eigenstate of T, for values of 0 that are consistent with the
periodicity n ~n + N.

What values of 6 give different states |#)7 [Recall that n is an integer.]

Find the matrix elements of the unitary operator U which relates position eigen-
states |n) to momentum eigenstates |0): Uy, = (n|6).

Find the spectrum of H.

Draw a picture of €(f): plot the energy eigenvalues versus the ‘momentum’ 6.

Show that the matrix above is an approximation to (minus) the 1-dimensional
Laplacian —@2. That is, show (using Taylor’s theorem) that

@02 f(x) = —2f(2) + (f(z +a) + f(z — a) + O(a)

(where “O(a)” denotes terms proportional to the small quantity a).

In the expression for the Hamiltonian, to restore units, I should have written:

- 1

Hln) = o (2n) = [n+1) = [n = 1)), with [N +1) = 1)
where a is the distance between the sites, and m is the mass. Consider the limit
where a — 0, N — oo and look at the lowest-energy states (near p = 0); show

that we get the spectrum of a free particle on the line, € = %.



