
University of California at San Diego – Department of Physics – Prof. John McGreevy

Quantum Mechanics C (Physics 130C) Winter 2015
Assignment 2

Posted January 14, 2015 Due 11am Thursday, January 22, 2015

Please remember to put your name at the top of your homework.

Go look at the Physics 130C web site; there might be something new and interesting there.

Reading: Preskill’s Quantum Information Notes, Chapter 2.1, 2.2.

1. More linear algebra exercises.

(a) Show that an operator with matrix representation

P =
1

2

(
1 1

1 1

)
is a projector.

(b) Show that a projector with no kernel is the identity operator.

2. Complete sets of commuting operators. In the orthonormal basis {|n〉}n=1,2,3,

the Hermitian operators Â and B̂ are represented by the matrices A and B:

A =

a 0 0

0 a 0

0 0 −a

 , B =

 0 ib 0

−ib 0 0

0 0 b

 ,

with a, b real.

(a) Determine the eigenvalues of B̂. Indicate whether its spectrum is degenerate or

not.

(b) Check that A and B commute. Use this to show that Â and B̂ do so also.

(c) Find an orthonormal basis of eigenvectors common to A and B (and thus to Â

and B̂) and specify the eigenvalues for each eigenvector.

(d) Which of the following six sets form a complete set of commuting operators for

this Hilbert space? (Recall that a complete set of commuting operators allow us

to specify an orthonormal basis by their eigenvalues.)

{Â}; {B̂}; {Â, B̂}; {Â2, B̂}; {Â, B̂2}; {Â2, B̂2}.
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3. A positive operator is one whose eigenvalues are all positive. Show that sum of positive

hermitian operators is positive, even if they don’t commute.

4. Measurement and time evolution.

Consider a quantum system governed by a Hamiltonian Ĥ:

Ĥ|n〉 = En|n〉, n = 0, 1, 2, . . . ,

with 〈n|m〉 = δnm and non-degenerate energy levels. In addition, Â is an observable of

this system such that

Â|aα〉 = aα|aα〉, α = 0, 1, 2, . . . ,

with 〈aα|aβ〉 = δαβ; the aα are also non-degenerate. Finally, [Â, Ĥ] 6= 0.

(a) Prior to measurement of Â, the system is in state |n〉. What is the probability

Pn(aα) that measurement of Â will yield aα?

(b) If the preceding measurement were carried out at time t = 0 and yielded the result

aα, what is the state of the system immediately following the measurement, i.e.

what is |ψ(t = 0)〉?
(c) Following the t = 0 measurement of Â that yielded aα, Â is again measured at

t > 0. What is the probability P (aα, t) that the value aα will again be found?

Express your answer in terms of the probabilities Pn(aα).

(d) Now let Ĥ be the Hamiltonian for the 1-dimensional harmonic oscillator with nat-

ural frequency ω0, and set t = 2π/ω0. What is the numerical value of P (aα, 2π/ω0)?

Note: None of your answers should contain Â or Ĥ.

The following three problems form a triptych, on the subject of resolving the various

infinities involved in the quantum mechanics of a particle on the real line. There are

two such infinities: one is the fact that the real line goes on forever; this is resolved in

problem 5. The other is the fact that in between any two points there are infinitely

many points; this is resolved in problem 6. In problem 7 we resolve both to get a

finite-dimensional Hilbert space.

5. Particle on a circle.

Consider a particle which lives on a circle:
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That is, its coordinate x takes values in [0, 2πR] and we identify x ' x + 2πR. The

operator p̂ generates translations of the particle’s position, just as in the case of the

particle on the line.

(a) Let’s assume that the wavefunction of the particle is periodic in x:

ψ(x+ 2πR) = ψ(x) .

What set of values can its momentum (that is, eigenvalues of the operator p̂ =

−i~∂x) take?

[Hint: demand that the translation operator T̂ (2πR) = ei2πRp̂ acts like the identity

operator.]

(b) Recall that the overall phase of the state vector is not physical data. This suggests

the possibility that the wavefunction might not be periodic, but instead might

acquire a phase when we go around the circle:

ψ(x+ 2πR) = eiϕψ(x)

for some fixed ϕ. In this case what values does the momentum take?

6. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the discrete

values x = na, n ∈ Z where a is some unit of length and n is an integer. We’ll call the

corresponding position eigenstates |n〉. The Hilbert space is still infinite-dimensional,

but at least it’s countably infinite.

Now only translation operators T̂ n = eip̂na which translate the particle by integer

multiples of a map the Hilbert space to itself. In this problem we will determine: what

is the spectrum of the momentum operator p̂ in this system?

(a) Consider the state

|θ〉 =
1√
N

∑
n∈Z

einθ|n〉.

Show that |θ〉 is an eigenstate of T̂ . Why do I want to call θ momentum?

(b) What range of values of θ give different states |θ〉? [Recall that n is an integer.]

7. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we’ll wrap the lattice

around a circle, in the following sense. Its position can take only the discrete val-

ues x = a, 2a, 3a, ..., Na (where, again, a is some unit of length and again we’ll call

the corresponding position eigenstates |n〉). Suppose further that the particle lives on

a circle, so that the site labelled x = (N + 1)a is the same as the site labelled x = a.

We can visualize this as in the figure:
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In this case, the Hilbert space has finite dimension (N).

Consider the following N ×N matrix representation of a Hamiltonian operator (a is a

constant):

H =
1

a2



2 −1 0 0 0 · · · 0 −1

−1 2 −1 0 0 · · · 0 0

0 −1 2 −1 0 · · · 0 0

0 0 −1 2 −1 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 2 −1

−1 0 0 0 0 · · · −1 2︸ ︷︷ ︸
N



N


(a) Convince yourself that this is equivalent to the following: Acting on an N -

dimensional Hilbert space with orthonormal basis {|n〉, n = 1, . . . , N}, Ĥ acts

by

a2Ĥ|n〉 = 2|n〉 − |n+ 1〉 − |n− 1〉, with |N + 1〉 ' |1〉

that is, we consider the arguments of the ket to be integers modulo N .

(b) What are the symmetries of this system?

[Hint: what is [Ĥ, T̂ ] where T̂ is the ‘shift operator’ defined by T̂ : |n〉 7→ |n+1〉?]

Consider again the state

|θ〉 =
1√
N

N∑
n=1

einθ|n〉.
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(c) Show that |θ〉 is an eigenstate of T̂ , for values of θ that are consistent with the

periodicity n ' n+N .

(d) What values of θ give different states |θ〉? [Recall that n is an integer.]

(e) Find the matrix elements of the unitary operator U which relates position eigen-

states |n〉 to momentum eigenstates |θ〉: Uθn ≡ 〈n|θ〉.

(f) Find the spectrum of Ĥ.

Draw a picture of ε(θ): plot the energy eigenvalues versus the ‘momentum’ θ.

(g) Show that the matrix above is an approximation to (minus) the 1-dimensional

Laplacian −∂2x. That is, show (using Taylor’s theorem) that

a2∂2xf(x) = −2f(x) + (f(x+ a) + f(x− a)) +O(a)

(where “O(a)” denotes terms proportional to the small quantity a).

(h) In the expression for the Hamiltonian, to restore units, I should have written:

Ĥ|n〉 =
~2

2m

1

a2
(2|n〉 − |n+ 1〉 − |n− 1〉) , with |N + 1〉 ' |1〉

where a is the distance between the sites, and m is the mass. Consider the limit

where a → 0, N → ∞ and look at the lowest-energy states (near p = 0); show

that we get the spectrum of a free particle on the line, ε = p2

2m
.
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