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Quantum Mechanics C (Physics 130C) Winter 2015
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Posted January 20, 2015 Due 11am Thursday, January 29, 2015

Please remember to put your name at the top of your homework.

Note that this problem set has been shortened relative to its initial version.

Reading: Reading: On two-state systems: Preskill §2.2, Schumacher §2.1. On composite

quantum systems: Preskill §2.3, Le Bellac Chapter 6.

1. Pauli spin matrix gymnastics.

(This problem is long but each part is pretty simple.) Recall the definition of the Pauli

spin matrices:

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(Occasionally I will write instead σx ≡ σ1 ≡ X,σy ≡ σ2 ≡ Y,σz ≡ σ3 ≡ Z.)

(a) Show that the σi are Hermitian.

(b) Find their eigenvalues and eigenvectors.

(c) There are only so many two-by-two matrices. A product of sigmas can be written

in terms of sigmas. Show that

σiσj = iεijkσk + δij1 (1)

where εijk is the completely antisymmetric object with ε123 = 1 (that is: εijk = 0

if any of ijk are the same, = 1 if ijk is a cyclic permutation of 123 and = −1 if

ijk is an odd permutation of 123, like 132)1. You may prefer to do the next two

parts of the problem first.

(d) Convince yourself that (1) implies

[σi,σj] = 2iεijkσk,

and that therefore Ji
1
2

≡ 1
2
σi satisfy

[Ji
1
2
,Jj

1
2

] = iεijkJk
1
2
,

1Note the use of the Einstein summation convention here: the index k in equation (1) is summed.
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http://www.theory.caltech.edu/~preskill/ph219/chap2_13.pdf
http://www.theory.caltech.edu/~preskill/ph219/chap2_13.pdf


the same algebra as the rotation generators on the 3-state system in §1.5 of the

lecture notes. [Cultural note: this is the Lie algebra called su(2).]

(e) Convince yourself that (1) implies

{σi,σj} = 2δij

where {A,B} ≡ AB +BA is called the anti-commutator.

[Cultural note: this is called the Dirac algebra or Clifford algebra.]

It may be useful to note that {A,B}+ [A,B] = 2AB.

(f) Convince yourself that (1) is the same as

(~σ · ~a)(~σ ·~b) = ~a ·~b+ i~σ ·
(
~a×~b

)
.

In particular, check that (~σ · n̂)2 = 1 if n̂ is a unit vector.

(g) Show that

ei
θ
2
~σ·n̂ = 1 cos

θ

2
+ i~σ · n̂ sin

θ

2

where n̂ is a unit vector.

[Hint: use the Taylor expansion of the LHS (left-hand side): eA = 1+A+A2/2!+...

and the previous results for (~σ · n̂)2.]

2. Time evolution of a two-level system. Le Bellac, Problem 4.4.4, parts 1-3.

Here’s a summary, in case you don’t have the book: Consider the Hamiltonian

H = ~
(
A B

B −A

)
in the basis |+〉 ≡ | ↑〉, |−〉 ≡ | ↓〉, where A,B are real numbers. Set ~ = 1. You know

the eigensystem of this matrix from our discussion of Pauli gymnastics. It is useful to

write it in terms of Ω, θ defined by

Ω = 2
√
A2 +B2, tan θ =

B

A
.

1. The state vector at time t can be written as

|ϕ(t)〉 = c+(t)|+〉+ c−(t)|−〉.

Find a system of ODEs for the components c±(t) that follow from the Schrödinger

equation.

2. Decompose the initial state |ϕ(t = 0)〉 in the energy eigenbasis (H|ε±〉 = ε±|ε±〉):

|ϕ(t = 0)〉 =
∑
±

a±|ε±〉 .
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Express c+(t) in terms of the coefficients a± (Le Bellac calls them a+ = λ, a− = µ.)

3. Suppose c+(0) = 0. Find a± (up to a phase) in terms of A,B (or rather, Ω and θ).

Find the probability of finding the system in the state | ↑〉 at time t.

4. You can skip this part if you prefer.

3. Rotations of a spin-1
2
.

Imagine you have under your control a spin-1
2

particle. By this I mean that the particle

is fixed in space in your lab (so you can ignore the physics of its position degrees of

freedom for this problem), and you have a machine by which you can rotate its spin

by an arbitrary angle about an arbitrary axis, and measure its spin about the ž axis.

Suppose at t = 0 you measure the spin to be up along the ž direction. You then apply

a rotation by 90 degrees about the x̌ axis, U(x̌, π/2). What is the resulting state of

the spin? What is the probability of measuring up along the ž axis now?

4. A Mach-Zehnder interferometer.

Schumacher Exercise 2.7, page 23. (Electronic version here.)

5. Maximally entangled spins.

Consider the following state in the Hilbert space HA ⊗HB of two qbits A and B:

√
2|Bohm〉 = | ↑〉A| ↓〉B − | ↓〉A| ↑〉B ≡ | ↑↓〉 − | ↓↑〉.

Show that this state is a singlet of the total spin operator:

~σT ≡ ~σA ⊗ 1B + 1A ⊗ ~σB ,

2 meaning that

~σT |Bohm〉 = 0 .

Notice that this means that in this Bohm state, a measurement of any component of

σA always gives the minus the measurement of the same component of σB, whichever

component we choose to measure.

2We will sometimes abbreviate expressions like this as ~σT = ~σA + ~σB .
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