University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics C (Physics 130C) Winter 2015 Worksheet 1

Announcements

• The 130C web site is:

 $http://physics.ucsd.edu/\sim mcgreevy/w15/$.

Please check it regularly! It contains relevant course information!

• Greetings everyone! This week is Dirac notation/linear algebra bootcamp.

Problems

1. Unitary Operators Update

An operator U is unitary if (and only if) $U^{\dagger}U = 1$. Where the dagger of a matrix is a combination transpose (switch rows with columns) and complex conjugation. A restatement is $U^{\dagger} = U^{-1}$, the inverse matrix of U.

(a) Unitary operators evolve states in quantum mechanics and are related to something familiar in classical mechanics.

Consider a unitary matrix with only real valued entries. Denote this matrix R. What does this imply about R^{-1} ?

Take $R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ Verify the above conclusion for this R. Act R on the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ for your favorite value of θ to see what it does. Any such (real) matrices are called *orthogonal*.

(b) Another important property U must satisfy, if it takes states to states, is that it doesn't change the laws of probability: the lengths of vectors should remain unchanged.

Show that $||U|\phi\rangle|| = ||\phi\rangle||$.

Do this by showing the inner product of $U|\psi\rangle$ and $U|\phi\rangle$ is equal to $\langle \psi|\phi\rangle$. How do I relate norms to inner products?

(c) Suppose I would like to measure an observable O after updating my state with U. Show that the quantity of interest is $O' = U^{\dagger}OU$. Prove that O' is Hermitian. Recall that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$

2. Compatible Measurements

Consider the following matrices:
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 5 & 3a \\ 6 & b \end{pmatrix}$

For what values of a and b are these simultaneously diagonalizable? To solve this first determine the eigenvectors for X. Then demand these are also eigenvectors of Q.¹

We define the commutator [M, N] = MN - NM

For these particular values of a and b what is [X, Q]?

We say that two observables (Hermitian operators) are compatible if we the order in which we measure them doesn't matter.

Translate this to a statement about commutators and diagonalization.

Does
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 work?

3. Projecting

An important type of operator is a projector. We say P is a projector if $P^2 = P$; projecting twice is the same as once.

(a) Consider $P = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and prove P is a projector. What is the action on $\begin{pmatrix} x \\ y \end{pmatrix}$?

Show P can be written as the *outer* product of $\begin{pmatrix} 0\\1 \end{pmatrix}$ and itself.

(b) Adopting Dirac's notation let $|i\rangle$ be a normalized $(\langle i|j\rangle = \delta_{i,j})$ state. Show that $P_i = |i\rangle\langle i|$ is a projector onto the state $|i\rangle$. Show it is Hermitian. What is $\langle j|P_i|j\rangle$?

In this way projectors can represent yes or no questions relating to our system.

4. Represent

Suppose the vectors $\{|a\rangle, |b\rangle, |c\rangle\}$ form an orthonormal basis for \mathcal{H} where some operator \hat{K} lives. Suppose we know also that these vectors are *eigenvectors* of \hat{K} :

$$\hat{K}|a\rangle = 5|a\rangle \quad \hat{K}|b\rangle = -12|b\rangle \quad \hat{K}|c\rangle = 2\mathbf{i}|c\rangle$$
(1)

- (a) Could \hat{K} represent a physical observable of the system?
- (b) Write the matrix \hat{K} using Dirac notation. Hint: $\hat{K} = a |a\rangle\langle a| + b |b\rangle\langle b| + c |c\rangle\langle c|$
- (c) Consider $|\psi\rangle = \frac{1}{\sqrt{2}}(2|a\rangle + 5\mathbf{i}|c\rangle)$ and compute the expectation or average value of \hat{K} in this state defined as $\langle \psi | \hat{K} | \psi \rangle$. Do this using Dirac notation and regular matrix multiplication.

¹This would not work if either X or \overline{Q} had repeated eigenvalues though you could still find a basis to diagonalize both.