University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics C (Physics 130C) Winter 2015 Worksheet 7

Announcements

• The 130C web site is:

http://physics.ucsd.edu/~mcgreevy/w15/ .

Please check it regularly! It contains relevant course information!

• This week let's generalize Grover's algorithm

Problems

1. Continuous Search

Previously we've discussed Grover's algorithm implemented by some discrete set of unitary operators. Let's consider an analogous problem where $U(t) = e^{-i\hat{H}t}$.

Define the computational basis of a single qubit to be $\{|0\rangle, |1\rangle\}$ and let us suppose we have *n*-many qubits living in $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n$.

Let $|s\rangle$ be a computational basis element¹ and $|\psi\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$ be an equal superposition of all such elements.

(a) What is the dimension of the subspace that $|s\rangle$ and $|\psi\rangle$ span? Note they aren't necessarily orthogonal.

Write an orthonormal basis for this space. (Hint: Construct a state which is composed of $|s\rangle$ and $|\psi\rangle$ but is orthogonal to $|s\rangle$)

- (b) Suppose our Hamiltonian is $\hat{H} = |s\rangle\langle s| + |\psi\rangle\langle \psi|$. Rewrite \hat{H} using the basis above.
- (c) In this basis write \hat{H} as a matrix and expand in terms of Pauli's. What is the form of $U = e^{-\mathbf{i}\hat{H}t}$ on this subspace? Recall $e^{-\mathbf{i}\theta\vec{\sigma}\cdot\hat{n}} = \cos\theta\mathbb{1} \mathbf{i}\sin\theta(\vec{\sigma}\cdot\hat{n})$
- (d) Suppose we initialize our quantum computer to $|\psi\rangle$ and evolve by U for a time t = T at which we then measure the state in the computational basis. What is the probability for measuring $|s\rangle$ at T? At what time should be measure to maximize this probability?

(Hint: You will need to evaluate $U|\psi\rangle$ which you have in terms of Pauli's which act as they normally do on the basis vectors for the subspace we've been considering.)

¹So s would be some n-digit string of 0's and 1's