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0.1 Sources

The material in these notes is collected from many places, among which I should

mention in particular the following:

Peskin and Schroeder, An introduction to quantum field theory (Wiley)

Zee, Quantum Field Theory (Princeton, 2d Edition)

Banks, Modern Quantum Field Theory: A Concise Introduction (Cambridge)

Schwartz, Quantum field theory and the standard model (Cambridge)

David Tong’s lecture notes

Many other bits of wisdom come from the Berkeley QFT courses of Prof. L. Hall

and Prof. M. Halpern.
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0.2 Conventions

Following most QFT books, I am going to use the + − −− signature convention for

the Minkowski metric. I am used to the other convention, where time is the weird one,

so I’ll need your help checking my signs. More explicitly, denoting a small spacetime

displacement as dxµ ≡ (dt, d~x)µ, the Lorentz-invariant distance is:

ds2 = +dt2 − d~x · d~x = ηµνdx
µdxν with ηµν = ηµν =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


µν

.

(spacelike is negative). We will also write ∂µ ≡ ∂
∂xµ

=
(
∂t, ~∇x

)µ
, and ∂µ ≡ ηµν∂ν . I’ll

use µ, ν... for Lorentz indices, and i, k, ... for spatial indices.

The convention that repeated indices are summed is always in effect unless otherwise

indicated.

A consequence of the fact that english and math are written from left to right is

that time goes to the left.

A useful generalization of the shorthand ~ ≡ h
2π

is

d̄k ≡ dk

2π
.

I will also write /δ
d
(q) ≡ (2π)dδ(d)(q). I will try to be consistent about writing Fourier

transforms as ∫
ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts. WLOG ≡ without loss of generality.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

+h.c. ≡ plus hermitian conjugate.

We work in units where ~ and the speed of light, c, are equal to one unless otherwise

noted. When I say ‘Peskin’ I usually mean ‘Peskin & Schroeder’.

Please tell me if you find typos or errors or violations of the rules above.
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6 To infinity and beyond

Last quarter we ended at a high point, computing the amplitudes and cross-sections

for many processes using QED. More precisely, we studied the leading-order-in-α am-

plitudes, using Feynman diagrams which were trees – no loops. The natural next step

is to look at the next terms in the perturbation expansion in α, which come from dia-

grams with one loop. When we do that we’re going to encounter some confusing stuff,

in fact some of the same confusing stuff we encountered in thinking about Casimir

forces at the beginning of last quarter.

We didn’t encounter these short-distance issues in studying tree-level diagrams

because in a tree-level diagram, the quantum numbers (and in particular the momenta)

of the intermediate states are fixed by the external states. In contrast, once there is a

loop, there are undetermined momenta which must be summed, and this sum includes,

it seems, arbitrarily high momentum modes, about which surely we have no information

yet.

In order to put ourselves in the right frame of mind to think about that stuff, let’s

make a brief retreat to systems with finitely many degrees of freedom.

Then we’ll apply some of these lessons to a toy field theory example (scalar field

theory). Then we’ll come back to perturbation theory in QED. Reading assignment

for this chapter: Zee §III.

6.1 A parable from quantum mechanics on the breaking of

scale invariance

Recall that the coupling constant in φ4 theory in D = 3 + 1 spacetime dimensions

is dimensionless, and the same is true of the electromagnetic coupling e in QED in

D = 3+1 spacetime dimensions. In fact, the mass parameters are the only dimensionful

quantities in those theories, at least in their classical avatars. This means that if we

ignore the masses, for example because we are interested in physics at much higher

energies, then these models seem to possess scale invariance: the physics is unchanged

under zooming in.

Here we will study a simple quantum mechanical example (that is: an example

with a finite number of degrees of freedom)1 with such (classical) scale invariance. It

exhibits many interesting features that can happen in strongly interacting quantum

field theory – asymptotic freedom, dimensional transmutation. Because the model is

simple, we can understand these phenomena without resort to perturbation theory.

1I learned this example from Marty Halpern.
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They will nevertheless illuminate some ways of thinking which we’ll need in examples

where perturbating is our only option.

Consider the following (‘bare’) action:

S[q] =

∫
dt

(
1

2
~̇q2 + g0δ

(2)(~q)

)
≡
∫
dt

(
1

2
~̇q2 − V (~q)

)
where ~q = (x, y) are two coordinates of a quantum particle, and the potential involves

δ(2)(~q) ≡ δ(x)δ(y), a Dirac delta function. I chose the sign so that g0 > 0 is attractive.

(Notice that I have absorbed the inertial mass m in 1
2
mv2 into a redefinition of the

variable q, q →
√
mq.)

First, let’s do dimensional analysis (always a good idea). Since ~ = c = 1, all

dimensionful quantites are some power of a length. Let −[X] denote the number of

powers of length in the units of the quantity X; that is, if X ∼ (length)ν(X) then we

have [X] = −ν(X), a number. We have:

[t] = [length/c] = −1 =⇒ [dt] = −1.

The action appears in exponents and is therefore dimensionless (it has units of ~), so

we had better have:

0 = [S] = [~]

and this applies to each term in the action. We begin with the kinetic term:

0 = [

∫
dt~̇q2] =⇒

[~̇q2] = +1 =⇒ [~̇q] = +
1

2
=⇒ [~q] = −1

2
.

Since 1 =
∫
dqδ(q), we have 0 = [dq] + [δ(q)] and

[δD(~q)] = −[q]D =
D

2
, and in particular [δ2(~q)] = 1.

This implies that the naive (“engineering”) dimensions of the coupling constant g0 are

[g0] = 0 – it is dimensionless. Classically, the theory does not have a special length

scale; it is scale invariant.

The Hamiltonian associated with the Lagrangian above is

H =
1

2

(
p2
x + p2

y

)
+ V (~q).
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Now we treat this as a quantum system. Acting in the position basis, the quantum

Hamiltonian operator is

H = −~2

2

(
∂2
x + ∂2

y

)
− g0δ

(2)(~q)

So in the Schrödinger equation Hψ =
(
−~2

2
∇2 + V (~q)

)
ψ = Eψ, the second term

on the LHS is

V (~q)ψ(~q) = −g0δ
(2)(~q)ψ(0).

To make it look more like we are doing QFT, let’s solve it in momentum space:

ψ(~q) ≡
∫

d2p

(2π~)2 e
i~p·~q/~ϕ(~p)

The delta function is

δ(2)(q) =

∫
d2p

(2π~)2 e
i~p·~q/~.

So the Schrödinger equation says(
−1

2
∇2 − E

)
ψ(q) = −V (q)ψ(q)∫

d̄2peip·q
(
p2

2
− E

)
ϕ(p) = +g0δ

2(q)ψ(0)

= +g0

(∫
d̄2peip·q

)
ψ(0) (6.1)

which (integrating the both-hand side of (6.1) over q:
∫
d2qeip·q ((6.1)) ) says(

~p2

2
− E

)
ϕ(~p) = +g0

∫
d2p′

(2π~)2ϕ(~p′)︸ ︷︷ ︸
=ψ(0)

There are two cases to consider:

• ψ(~q = 0) =
∫

d̄2pϕ(~p) = 0. Then this case is the same as a free theory, with the

constraint that ψ(0) = 0, (
~p2

2
− E

)
ϕ(~p) = 0

i.e. plane waves which vanish at the origin, e.g. ψ ∝ sin pxx
~ e
±ipyy/~. These scat-

tering solutions don’t see the delta-function potential at all.
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• ψ(0) ≡ α 6= 0, some constant to be determined. This means ~p2/2−E 6= 0, so we

can divide by it :

ϕ(~p) =
g0

~p2

2
− E

(∫
d̄2p′ϕ(~p′)

)
=

g0

~p2

2
− E

α.

The integral on the RHS (for ψ(0) = α) is a little problematic if E > 0, since

then there is some value of p where p2 = 2E. Avoid this singularity by going to

the boundstate region: consider E = −εB < 0. So:

ϕ(~p) =
g0

~p2

2
+ εB

α.

What happens if we integrate this
∫

d̄2p to check self-consistency – the LHS should

give α again:

0
!

=

∫
d̄2pϕ(~p)︸ ︷︷ ︸

=ψ(0)=α 6=0

(
1−

∫
d̄2p

g0

~p2

2
+ εB

)

=⇒
∫

d̄2p
g0

~p2

2
+ εB

= 1

is a condition on the energy εB of possible boundstates.

But there’s a problem: the integral on the LHS behaves at large p like∫
d2p

p2
=∞ .

At this point in an undergrad QM class, you would give up on this model. In QFT

we don’t have that luxury, because this happens all over the place. Here’s what we do

instead.

We cut off the integral at some large p = Λ:∫ Λ d2p

p2
∼ log Λ .

This our first example of the general principle that a classically scale invariant system

will exhibit logarithmic divergences (rather: logarithmic dependence on the cutoff).

It’s the only kind allowed by dimensional analysis.

The introduction of the cutoff can be thought of in many ways: we could say there

are no momentum states with |p| > Λ, or maybe we could say that the potential is not

really a delta function if we look more closely. The choice of narrative here shouldn’t

affect our answers to physics questions.
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More precisely:∫ Λ d2p
p2

2
+ εB

= 2π

∫ Λ

0

pdp
p2

2
+ εB

= 2π log

(
1 +

Λ2

2εB

)
.

So in our cutoff theory, the boundstate condition is:

1 = g0

∫ Λ d̄2p
p2

2
+ εB

=
g0

2π~2
log

(
1 +

Λ2

2εB

)
.

A solution only exists for g0 > 0. This makes sense since only then is the potential

attractive (recall that V = −g0δ).

Now here’s a trivial-seeming step that offers a dramatic new vista: solve for εB.

εB =
Λ2

2

1

e
2π~2

g0 − 1
. (6.2)

As we remove the cutoff (Λ → ∞), we see that E = −εB → −∞, the boundstate

becomes more and more bound – the potential is too attractive.

Suppose we insist that the boundstate energy εB is a fixed thing – imagine we’ve

measured it to be 200 MeV2. We should express everything in terms of the measured

quantity. Then, given some cutoff Λ, we should solve for g0(Λ) to get the boundstate

energy we have measured:

g0(Λ) =
2π~2

log
(

1 + Λ2

2εB

) .
This is the crucial step: this silly symbol g0 which appeared in our action doesn’t mean

anything to anyone (see Zee’s dialogue with the S.E. in section III). We are allowing

g0 ≡ the bare coupling to be cutoff-dependent.

Instead of a dimensionless coupling g0, the useful theory contains an arbitrary

dimensionful coupling constant (here εB). This phenomenon is called dimensional

transmutation (d.t.). The cutoff is supposed to go away in observables, which depend

on εB instead.

In QCD we expect that in an identical way, an arbitrary scale ΛQCD will enter into

physical quantities. (If QCD were the theory of the whole world, we would work in

units where it was one.) This can be taken to be the rest mass of some mesons –

boundstates of quarks. Unlike this example, in QCD there are many boundstates, but

their energies are dimensionless multiplies of the one dimensionful scale, ΛQCD. Nature

chooses ΛQCD ' 200 MeV.

2Spoiler alert: I picked this value of energy to stress the analogy with QCD.
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[This d.t. phenomenon was maybe first seen in a perturbative field theory in S.

Coleman, E. Weinberg, Phys Rev D7 (1973) 1898. We’ll come back to their example.]

There are more lessons in this example. Go back to (6.2):

εB =
Λ2

2

1

e
2π~2

g0 − 1
6=
∞∑
n=0

gn0 fn(Λ)

it is not analytic (i.e. a power series) in g0(Λ) near small g0; rather, there is an essential

singularity in g0. (All derivatives of εB with respect to g0 vanish at g0 = 0.) You can’t

expand the dimensionful parameter in powers of the coupling. This means that you’ll

never see it in perturbation theory in g0. Dimensional transmutation is an inherently

non-perturbative phenomenon.

Look at how the bare coupling depends on the cutoff in this example:

g0(Λ) =
2π~2

log
(

1 + Λ2

2εB

) Λ2�εB→ 2π~2

log
(

Λ2

2εB

) Λ2�εB→ 0

– the bare coupling vanishes in this limit, since we are insisting that the parameter εB
is fixed. This is called asymptotic freedom (AF): the bare coupling goes to zero (i.e.

the theory becomes free) as the cutoff is removed. This also happens in QCD.

RG flow equations. Define the beta-function as the logarithmic derivative of the

bare coupling with respect to the cutoff:

Def: β(g0) ≡ Λ
∂

∂Λ
g0(Λ) .

For this theory

β(g0) = Λ
∂

∂Λ

 2π~2

log
(

1 + Λ2

2εB

)
 calculate

= − g2
0

π~2

 1︸︷︷︸
perturbative

− e−2π~2/g0︸ ︷︷ ︸
not perturbative

 .

Notice that it’s a function only of g0, and not explicitly of Λ. Also, in this simple toy

theory, the perturbation series for the beta function happens to stop at order g2
0.

β measures the failure of the cutoff to disappear from our discussion – it signals a

quantum mechanical violation of scale invariance. What’s β for? Flow equations:

ġ0 = β(g0).
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3 This is a tautology. The dot is

Ȧ = ∂sA, s ≡ log Λ/Λ0 =⇒ ∂s = Λ∂Λ.

(Λ0 is some reference scale.) But forget for the moment that this is just a definition:

ġ0 = − g2
0

π~2

(
1− e−2π~2/g0

)
.

This equation tells you how g0 changes as you change the cutoff. Think of it as a

nonlinear dynamical system (fixed points, limit cycles...)

Def: A fixed point g?0 of a flow is a point where the flow stops:

0 = ġ0|g?0 = β(g?0) ,

a zero of the beta function. (Note: if we have many couplings gi, then we have such

an equation for each g: ġi = βi(g). So βi is (locally) a vector field on the space of

coupilngs.)

Where are the fixed points in our example?

β(g0) = − g2
0

π~2

(
1− e−2π~2/g0

)
.

There’s only one: g?0 = 0, near which β(g0) ∼ − g2
0

π~ , the non-perturbative terms are

small. What does the flow look like near this point? For g0 > 0, ġ0 = β(g0) < 0. With

this (high-energy) definition of the direction of flow, g0 = 0 is an attractive fixed point:

*<-<-<-<-<-<-<-<-<-<-<------------------------ g_0

g?0 = 0.

We already knew this. It just says g0(Λ) ∼ 1
log Λ2 → 0 at large Λ. But the general

lesson is that in the vicinity of such an AF fixed point, the non-perturbatuve stuff

e
−2π~2

g0 is small. So we can get good results near the fixed point from the perturbative

part of β. That is: we can compute the behavior of the flow of couplings near an AF

fixed point perturbatively, and be sure that it is an AF fixed point. This is the situation

in QCD.

3Warning: The sign in this definition carries a great deal of cultural baggage. With the definition

given here, the flow (increasing s) is toward the UV, toward high energy. This is the high-energy

particle physics perspective, where we learn more physics by going to higher energies. As we will see,

there is a strong argument to be made for the other perspective, that the flow should be regarded as

going from UV to IR, since we lose information as we move in that direction – in fact, the IR behavior

does not determine the UV behavior in general.
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On the other hand, the d.t. phenomenon that we’ve shown here is something that

we can’t prove in QCD. However, the circumstantial evidence is very strong!

Another example where this happens is quantum mechanics in any number of vari-

ables with a central potential V = −g2
0

r2 . It is also classically scale invariant:

[r] = −1

2
,

[
1

r2

]
= +1 =⇒ [g0] = 0.

This model was studied in K.M. Case, Phys Rev 80 (1950) 797 and you will study it on

the first homework. The resulting boundstates and d.t. phenomenon are called Efimov

states; this model preserves a discrete scale invariance.

Here’s a quote from Marty Halpern from his lecture on this subject:

I want you to study this set of examples very carefully, because it’s the only time in

your career when you will understand what is going on.

In my experience it’s been basically true. For real QFTs, you get distracted by Feynman

diagrams, gauge invariance, regularization and renormalization schemes, and the fact

that you can only do perturbation theory.
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6.2 A simple example of perturbative renormalization in QFT

[Zee §III.1, Schwartz §15.4] Now let’s consider an actual field theory but a simple one,

namely the theory of a real scalar field in four dimensions, with

L = −1

2
φ2φ−m2φ2 − g

4!
φ4. (6.3)

Recall that [φ] = D−2
2

so [m] = 1 and [g] = 4−D
2

, so g is dimensionless in D = 4. As

above, this will mean logarithms!

Let’s do 2← 2 scattering of φ particles.

iM2←2 = + O(g3)

= −ig + iMs + iMt + iMu + O(g3)

where, in terms of qs ≡ k1 + k2, the s-channel 1-loop amplitude is

iMs =
1

2
(−ig)2

∫
d̄4k

i

k2 −m2 + iε

i

(qs − k)2 −m2 + iε
∼
∫ Λ d4k

k4
.

Parametrizing ignorance. Recall our discovery of the scalar field at the be-

ginning of last quarter by starting with a chain of springs, and looking at the long-

wavelength (small-wavenumber) modes. In the sum,
∫
d4k, the region of integration

that’s causing the trouble is not the part where the system looks most like a field

theory. That is: if we look closely enough (small enough 1/k), we will see that the

mattress is made of springs. In terms of the microscopic description with springs, there

is a smallest wavelength, of order the inverse lattice spacing: the sum stops.

Field theories arise from many such models, which may differ dramatically in their

short-distance physics. We’d like to not worry too much about which one, but rather

say things which do not depend on this choice. Recall the discussion of the Casimir

force from §1: in that calculation, many different choices of regulators for the mode

sum corresponded to different material properties of the conducting plates. The leading

Casimir force was independent of this choice; more generally, it is an important part of

the physics problem to identify which quantities are UV sensitive and which are not.

Parametrizing ignorance is another way to say ‘doing science’. In the context of

field theory, at least in the high-energy community it is called ‘regularization’.

[End of Lecture 21]
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Now we need to talk about the integral a little more. The part which is causing

the trouble is the bit with large k, which might as well be |k| ∼ Λ � m, so let’s set

m = 0 for simplicity.

We’ll spend lots of time learning to do integrals below. Here’s the answer:

iM = −ig + iCg2

(
log

Λ2

s
+ log

Λ2

t
+ log

Λ2

u

)
+O(g3)

If you must know, C = 1
16π2 .

Observables can be predicted from other observables. Again, the boldface

statement might sound like some content-free tweet from some boring philosophy-of-

science twitter feed, but actually it’s a very important thing to remember here.

What is g? As Zee’s Smart Experimentalist says, it is just a letter in some theorist’s

lagrangian, and it doesn’t help anyone to write physical quantities in terms of it. Much

more useful would be to say what is the scattering amplitude in terms of things that

can be measured. So, suppose someone scatters φ particles at some given (s, t, u) =

(s0, t0, u0), and finds for the amplitude iM(s0, t0, u0) = −igP where P is for ‘physical’.4

This we can relate to our theory letters:

−igP = iM(s0, t0, u0) = −ig + iCg2L0 +O(g3)

where L0 ≡ log Λ2

s0
+ log Λ2

t0
+ log Λ2

u0
. (Note that quantities like gP are often called gR

where ‘R’ is for ‘renormalized,’ whatever that is.)

Renormalization. Now here comes the big gestalt shift: Solve this equation for

the stupid letter g

−ig = −igP − iCg2L0 +O(g3)

= −igP − iCg2
PL0 +O(g3

P ). (6.4)

and eliminate g from the discussion:

iM(s, t, u) = −ig + iCg2L+O(g3)
(6.4)
= −igP − iCg2

PL0 + iCg2
PL+O(g3

P )

= −igP + iCg2
P

(
log

s0

s
+ log

t0
t

+ log
u0

u

)
+O(g3

P ). (6.5)

4You might hesitate here about my referring to the amplitude M as an ‘observable’. The difficult

question of what can actually be measured in experiments can be decoupled a bit from this discussion.

I’ll say more later, but if you are impatient see the beginning of Schwartz, chapter 18.
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This expresses the amplitude at any momenta (within the range of validity of the

theory!) in terms of measured quantities, gP , s0, t0, u0. The cutoff Λ is gone! Just like

in our parable in §6.1, it was eliminated by letting the coupling vary with it, g = g(Λ).

We’ll say a lot more about how to think about that dependence.

Renormalized perturbation theory. To slick up this machinery, consider the

following Lagrangian density (in fact the same as (6.3), with m = 0 for simplicity):

L = −1

2
φ2φ− gP

4!
φ4 − δg

4!
φ4 (6.6)

but written in terms of the measured coupling gP , and some as-yet-undetermined ‘coun-

terterm’ δg. Then

M(s, t, u) = −gP − δg − Cg2
P

(
log

s

Λ2
+ log

t

Λ2
+ log

u

Λ2

)
+O(g3

P ).

If we choose

δg = −g2
PC

(
log

s0

Λ2
+ log

t0
Λ2

+ log
u0

Λ2

)
then we find

M(s, t, u) = −gP − Cg2
P

(
log

s

s0

+ log
t

t0
+ log

u

u0

)
+O(g3

P )

– all the dependence on the unknown cutoff is gone, and we satisfy the observational

condition M(s0, t0, u0) = −gP .

The only price is that the ‘bare coupling’ g depends on the cutoff and becomes

infinite if we pretend that there is no cutoff. Happily, we didn’t care about g anyway.

We can just let it go.

The step whereby we were able to absorb all the dependence on the cutoff into the

bare coupling constant involved some apparent magic. It is not so clear that the same

magic will happen if we study the next order O(g3
P ) terms. A QFT where all the cutoff

dependence to all orders can be removed with a finite number of counterterms is called

‘renormalizable’. As we will see, such a field theory is less useful because it allows us to

pretend that it is valid up to arbitrarily high energies. The alternative, where we must

add more counterterms (such as something like δ6
Λ2φ

6) at each order in perturbation

theory, is called an effective field theory, which is a field theory that has the decency

to predict its regime of validity.

6.3 Classical interlude: Mott formula

As a prelude to studying loops in QED, and to make clear what is at stake, I want to

fill a hole in our discussion of last quarter. By studying scattering of an electron from
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a heavy charged fermion (a muon is convenient) we will reconstruct the cross section

for scattering off a Coulomb potential (named after Mott). Then we’ll figure out how

it is corrected by other QED processes.

Crossing symmetry. If you look at a Feynman diagram on its side (for example

because someone else fails to use the convention that time goes to the left) it is still a

valid amplitude for some process. Similarly, dragging particles between the initial and

final state also produces a valid amplitude. Making this relation precise can save us

some work. The precise relation for dragging an incoming particle into the final state,

so that it is an outgoing antiparticle, is:

iMf←iA(pf ; pi, pA) = = iMĀf←i(pf , k = −pA; pi) = .

(If you must, note that this is another sense in which an antiparticle is a particle

going backwards in time.) If A is a spinor particle, the sum relations for particles and

antiparticles are different:∑
r

ur(p)ūr(p) = /p+m,
∑
r

vr(k)v̄r(k) = /k −m = −(/p+m)

– after accounting for k = −pA, they differ by an overall sign. Hence we must also ap-

pend a fermion sign factor (−1)number of fermions shuffled between in and out in the unpolarized

scattering probability. Here is an example.

µ+µ− ← e+e− . For example, we studied the process µ+µ− ← e+e− in some detail

at the very end of last quarter. To try to keep things straight, I’ll call the electron

momenta p, p′ and the muon momenta k, k′, since that won’t change under crossing.

We found the amplitude

iMµ+µ−←e+e− =

=
(
−ieūs(k)γµvs

′
(k′)
)

muons

−i
(
ηµν − (1−ξ)qµqν

q2

)
q2

(
−iev̄r

′
(p′)γνur(p)

)
electrons

(6.7)

(with q ≡ p+ p′ = k + k′)5 and the (unpolarized) scattering probability density

1

4

∑
spins

|M|2 spinor traces
=

1

4

e4

s2
EµνMµν ,

5Relative to the notation I used last quarter, p1 = p, p2 = p′, p3 = k, p4 = k′.
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where the tensor objects Eµν ,Mµν come respectively from the electron and muon lines,

1

4
Eµν = pµp

′
ν + p′µpν − ηµν(p · p′ +m2

e)

1

4
Mµν = kµk

′
ν + k′µkν − ηµν(k · k′ +m2

µ).

and they are contracted by the photon line, with s = q2 = (p+ p′)2.

e−µ− ← e−µ− . To get from this the amplitude (tree level, so far) for the process

e−µ− ← e−µ−, we must move the incoming positron line to an outgoing electron line,

and move the outgoing antimuon line to an incoming muon line (hence the sign in σ will

be (−1)number of fermions shuffled between in and out = (−1)2 = 1). Relative to the amplitude

for µ+µ− ← e+e− (6.7), we must replace the relevant vs with us for the initial/final

antiparticles that were moved into final/initial particles, and we must replace p′ →
−p′, k′ → −k′:

iM = = (−ieū(p′)γµu(p)))electrons

−i
(
ηµν −

(1−ξ)qtµqtν
q2
t

)
q2
t

(−ieū(k)γνu(k′))muons (6.8)

with qt ≡ p− p′ = k − k′. After the spin sum,

1

4

∑
s,s′,r,r′

|M|2 = 4
e4

t2
(
−pµp′ν − p′µpν − ηµν(−p · p′ +m2

e)
)

·
(
−kµk′ν − k′µkν − ηµν(−k · k′ +m2

µ)
)

(6.9)

On the Mandelstam variables, this is just the permutation (s, t, u)→ (t, u, s).

Payoff: the Mott formula. Recall other ways of figuring out the scattering cross

section from a Coulomb potential from a point charge of charge ze.

We think about scattering from a fixed electrostatic potential A0 = ze
r

and do classical

mechanics. I can never remember how this goes. Instead, let’s just scatter an electron

off a heavy charge, such as a muon. If the charge of the heavy object were z times that

of the electron, we would multiply the amplitude by z and the cross section by z2.

‘Heavy’ here means that we can approximate the

CoM frame by its rest frame, and its initial and fi-

nal energy as k′0 = mµ, k0 =
√
m2
µ + ~k2 = mµ +

1
2
~k2/mµ + · · · ' mµ. Also, this means the collision

is approximately elastic. In the diagram of the kine-

matics at right, c ≡ cos θ, s ≡ sin θ.
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−1

4
Mµν ' kµk

′
ν + k′µkν − ηµν

k · k′ −m2
µ︸ ︷︷ ︸

=m2
µ−m2

µ=0

 ' δµ0δν02m2
µ.

This means that the muon-line tensor factor Mµν in (6.9) simplifies dramatically: In

the electron line, we get

− p · p′ +m2
e = −E2 + ~p2 cos θ +m2

e = −~p2(1− cos θ). (6.10)

So

EµνMµν = 32m2
µE

00 = 32m2
µ(2E2 + η00(p · p′ −m2

e))
(6.10)
= 32m2

µ(2E2 − ~p2(1− cos θ))
trig
= 32m2

µ2(E2 − ~p2 sin2 θ/2)
β2≡~p2/E2

= 64m2
µE

2(1− β2 sin2 θ/2) .(6.11)

Noting that t = (p− p′)2 = −2~p2(1− cos θ), the cross section is

dσ =
1

vrel︸︷︷︸
=β

1

2E

1

2mµ

z2e4

t2
64m2

µE
2(1− β2 sin2 θ/2)

dΩ

16π2

p

Etotal

Etotal∼mµ
=

4E

β

z2e4(1− β2 sin2 θ/2)

t2
dΩ

from which we get
dσ

dΩMott
=
α2(1− β2 sin2 θ/2)

4β2~p2 sin4 θ/2
.

If we take β � 1 in this formula we get the Rutherford formula. Notice that it blows

up at θ → 0. This is a symptom of the long-range nature of the Coulomb potential,

i.e. the masslessness of the photon.

Radiative corrections. Now it’s time to think about perturbative corrections to

this cross section. Given that the leading-order calculation reproduced the classical

physics of the Coulomb potential, you can think of what we are doing as effectively

discovering (high-energy or short-distance) quantum corrections to the Coulomb law.

The diagrams we must include are these (I made the muon lines thicker and also red):

iMeµ←eµ = +




18



+

 +O(e3)

• What do the one-loop diagrams in the second line have in common? They have

an internal muon line. Why does this matter? When the energy going through the

line is much smaller than the muon mass, then the propagator is i(/k+mµ)

k2−m2
µ
∼ 1

mµ
and its

relative contribution is down by k/mµ � 1. So let’s neglect these for now.

• Why don’t we include diagrams like ? The LSZ formula tells us

that their effects on the S-matrix are accounted for by the wavefunction renormalization

factors Z

Seµ←eµ =
√
Ze

2√
Zµ

2

 +

( )
+ · · ·


amputated, on-shell

and in determining the locations of the poles whose residues are the S-matrix elements.

• Notice that the one-loop amplitudes are suppressed relative to the tree level am-

plitude by two factors of e, hence one factor of the fine structure constant α = e2

4π
.

Their leading effects on the cross section come from

σ ∼
∣∣∣ +

( )
+ · · ·

∣∣∣2 ∼ σtree +O(α3)

from the cross term between the tree and one-loop amplitudes.

In the above discussion, we encounter all three ‘primitive’ one-loop divergent am-

plitudes of QED, which we’ll study in turn:

• electron self-energy:

• vertex correction:

• vacuum polarization:

[End of Lecture 22]
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6.4 Electron self-energy in QED

Let’s think about the electron two-point function in momentum space:

G̃(2)(p) = + · · ·

= + · · ·(6.12)

As we did for the scalar field theory in §3 last quarter, we will denote the 1PI two-point

function by

−iΣ(p) ≡

a blob with nubbins; for fermions with conserved particle number, the nubbins carry

arrows indicating the particle number flow. Let me call the tree level propagator

iS(p) ≡
i(/p+m0)

p2 −m2
0 + iε

=
i

/p−m0

– notice that I added a demeaning subscript to the notation for the mass appearing in

the Lagrangian. Foreshadowing.

The full two point function is then:

G̃(2)(p) = iS + iS (−iΣ(p)) iS + iS (−iΣ(p)) iS (−iΣ(p)) iS + · · ·
= iS (1 + ΣS + ΣSΣS + · · ·) = iS

1

1− ΣS

=
i

/p−m0

1

1− Σ 1
/p−m0

=
i

/p−m0 − Σ(p)
. (6.13)

Are you worried about these manipulations because Σ and S are matrices in the spinor

indices? Don’t be: they are both made entirely from /p, and therefore they commute;
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we could do these manipulations in the eigenbasis of /p. This fully corrected propagator

has a pole at

/p = m ≡ m0 + Σ(m) . (6.14)

This means that the actual mass of the particle is this new quantity m. But what is

m (it is called the ‘renormalized mass’)? To figure it out, we need to know about Σ.

In QED we must study Σ in perturbation theory. As you can see from (6.12), the

leading (one-loop) contribution is

−iΣ2(p) = = (−ie)2

∫
d̄4k γµ

i(/k +m0)

k2 −m2
0 + iε

γν
−iηµν

(p− k)2 − µ2 + iε
.

Notice that I am relying on the Ward identity to enforce the fact that only the traverse

bit of the photon propagator matters. Also, I added a mass µ for the photon as an

IR regulator. We must keep the external momentum p arbitrary, since we don’t even

know where the mass-shell is!

Finally, I can’t put it off any longer: how are we going to do this loop-momentum

integral?

Step 1: Feynman parameter trick. It is a good idea to consider the integral∫ 1

0

dx
1

(xA+ (1− x)B)2
=

∫ 1

0

dx
1

(x(A−B) +B)2
=

1

A−B
−1

x(A−B) +B

∣∣∣∣x=1

x=0

=
1

A−B

(
− 1

A
+

1

B

)
=

1

AB
.

This allows us to combine the denominators into one:

I =
1

k2 −m2
0 + iε︸ ︷︷ ︸

B

1

(p− k)2 − µ2 + iε︸ ︷︷ ︸
A

=

∫ 1

0

dx
1

(x ((p2 − 2pk + k2)− µ2 + iε) + (1− x)(k2 −m2
0 + iε))

2

Step 2: Now we can complete the square

I =

∫ 1

0

dx
1(k − px︸ ︷︷ ︸

≡`

)2 −∆ + iε

2

with

`µ ≡ kµ − pµx, ∆ ≡ +p2x2 + xµ2 − xp2 + (1− x)m2
0 = xµ2 + (1− x)m2

0 − x(1− x)p2.
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Step 3: Wick rotate. Because of the iε we’ve been dutifully car-

rying around, the poles of the p0 integral don’t occur in the first

and third octants of the complex p0 plane. (And the integrand

decays at large |p0|.) This means that we can rotate the contour

to euclidean time for free: `0 ≡ i`4. Equivalently: the integral

over the contour at right vanishes, so the real time contour gives

the same answer as the (upward-directed) Euclidean contour.
Notice that `2 = −`2

E. Altogether

−iΣ2(p) = −e2

∫
d̄4`

∫ 1

0

dx
N

(`2 −∆ + iε)2
= −e2

∫ 1

0

dxi

∫
d̄4`E

N

(`2
E + ∆)

2

where the numerator is

N = γµ
(
/̀+ x/p+m0

)
γµ = −2

(
/l + x/p

)
+ 4m0.

Here I used two Clifford algebra facts: γµγµ = 4 and γµ/pγµ = 2− /p. Think about the

contribution from the term with /̀ in the numerator: everything else is invariant under

rotations of `

d̄4`E =
1

(2π)4
dΩ3`

3d` =
dΩ3

(2π)4
`2d`

2

2
,

so this averages to zero. The rest is of the form (using
∫
S3 dΩ3 = 2π2)

Σ2(p) = e2

∫ 1

0

dx

∫
`2d`2

2

(2π2)

(2π)4

2(2m0 − x/p)
(`2 + ∆)2

=
e2

8π2

∫ 1

0

dx(2m0 − x/p)J (6.15)

with

J =

∫ ∞
0

d`2 `2

(`2 + ∆)2 .

In the large ` part of the integrand this is∫ Λ d`2

`2
∼ log Λ.

You knew this UV divergence was coming. To be more precise, let’s add zero:

J =

∫
d`2

(
`2 + ∆

(`2 + ∆)2 −
∆

(`2 + ∆)2

)
=

∫ ∞
0

d`2

(
1

`2 + ∆
− ∆

(`2 + ∆)2

)
= ln(`2 + ∆)

∣∣∞
`2=0
− ∆

`2 + ∆

∣∣∣∣∞
`2=0

= ln(`2 + ∆)
∣∣∞
`2=0
− 1.

Recall that

∆ = xµ2 + (1− x)m2
0 − x(1− x)p2 ≡ ∆(µ2).
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Pauli-Villars regularization. Here is a convenient fiction: when you exchange

a photon, you also exchange a very heavy particle, with mass m2 = Λ2, with an extra

(−1) in its propagator. This means that (in this Pauli-Villars regulation scheme) the

Feynman rule for the wiggly line is instead

= −iηµν

(
1

k2 − µ2 + iε
− 1

k2 − Λ2 + iε

)
= −iηµν

(
µ2 − Λ2

(k2 − µ2 + iε) (k2 − Λ2 + iε)

)
This goes like 1

k4 at large k, so the integrals are more convergent. Yay.

Remembering that the residue of the pole in the propagator is the probability for

the field operator to create a particle from the vacuum, you might worry that this is

a negative probability, and unitarity isn’t manifest. This particle is a ghost. However,

we will choose Λ so large that the pole in the propagator at k2 = Λ2 will never by

accessed and we’ll never have external Pauli-Villars particles. We are using this as a

device to define the theory in a regime of energies much less than Λ. You shouldn’t

take the regulated theory too seriously: for example, the wrong-sign propagator means

wrong-sign kinetic terms for the PV fields. This means that very wiggly configurations

will be energetically favored rather than suppressed by the Hamiltonian. It will not

make much sense non-perturbatively.

I emphasize that this regulator is one possibility of many. They each have their

drawbacks. They all break scale invariance. A nice thing about PV is that it is

Lorentz invariant. A class of regulators which make perfect sense non-perturbatively is

the lattice (as in the model with masses on springs). The price is that it really messes

up the spacetime symmetries.

Applying this to the self-energy integral amounts to the replacement

J  J∆(µ2) − J∆(Λ2)

=
[(

ln
(
`2 + ∆(µ2)

)
− 1
)
−
(
ln
(
`2 + ∆(Λ2)

)
− 1
)]∣∣∞

0

= ln
`2 + ∆(µ2)

`2 + ∆(Λ2)

∣∣∣∣∞
0

= ln 1/1− ln
∆(µ2)

∆(Λ2)
= ln

∆(Λ2)

∆(µ2)
.

Notice that we can take advantage of our ignorance of the microphysics to make the

cutoff as big as we like and thereby simplify our lives:

∆(Λ2) = xΛ2 + (1− x)m2
0 − x(1− x)p2 Λ�everyone

≈ xΛ2.
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Finally then

Σ2(p)PV =
α

2π

∫ 1

0

dx(2m0 − x/p) ln
xΛ2

xµ2 + (1− x)m2
0 − x(1− x)p2

. (6.16)

Having arrived at this regulated expression for the self-energy we need to “impose

a renormalization condition,” i.e. introduce some observable physics in terms of which

to parametrize our answers. We return to (6.14): the shift in the mass a a result of

this one-loop self-energy is

δm ≡ m−m0 = Σ2(p = m) +O(e4) = Σ2(p = m0) +O(e4)

=
α

2π

∫ 1

0

dx (2− x)m0 ln
xΛ2

xµ2 + (1− x)m2
0 + x(1− x)m2

0︸ ︷︷ ︸
≡f(x,m0,µ)

=
α

2π

∫ 1

0

dx (2− x)m0

 ln
Λ2

m2
0︸ ︷︷ ︸

divergent

+ ln
xm2

0

f(x,m0, µ)︸ ︷︷ ︸
relatively small


≈ α

2π

(
2− 1

2

)
m0 ln

Λ2

m2
0

=
3α

4π
m0 ln

Λ2

m2
0

. (6.17)

In the penultimate step (with the ≈), we’ve neglected the finite bit (labelled ‘relatively

small’) compared to the logarithmically divergent bit: we’ve already assumed Λ� all

other scales in the problem.

Mass renormalization. Now the physics input: The mass of the electron is 511

keV (you can ask how we measure it and whether the answer we get depends on the

resolution of the measurement, and indeed there is more to this story; this is a low-

energy answer, for example we could make the electron go in a magnetic field and

measure the radius of curvature of its orbit and set mev
2/r = evB/c), so

511 keV ≈ me = m0

(
1 +

3α

4π
ln

Λ2

m2
0

)
+O(α2).

In this equation, the LHS is a measured quantity. In the correction on the RHS α ≈ 1
137

is small, but it is multiplied by ln Λ2

m0
which is arbitrarily large. This means that the

bare mass m0, which is going to absorb the cutoff dependence here, must actually be

really small. (Notice that actually I’ve lied a little here: the α we’ve been using is

still the bare charge; we will need to renormalize that one, too, before we are done.) I

emphasize: m0 and the other fake, bare parameters in L depend on Λ and the order of

perturbation theory to which we are working and other theorist bookkeeping garbage;

me does not. At each order in perturbation theory, we eliminate m0 and write our
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predictions in terms of me. It is not too surprising that the mass of the electron

includes such contributions: it must be difficult to travel through space if you are

constantly emitting and re-absorbing photons.

[End of Lecture 23]

Wavefunction renormalization. The actual propagator for the electron, near

the electron pole is

G̃(2)(p) =
i

/p−m0 − Σ(p)

p∼m
' iZ

/p−m
+ regular terms. (6.18)

The residue of the pole at the electron mass is no longer equal to one, but rather Z.

To see what is, Taylor expand near the pole

Σ(p)
Taylor

= Σ(/p = m) +
∂Σ

∂/p
|/p=m(/p−m) + · · ·

= Σ(/p = m0) +
∂Σ

∂/p
|/p=m0(/p−m0) + · · ·+O(e4)

So then (6.18) becomes

G̃(2)(p)
p∼m∼ i

/p−m− ∂Σ
∂/p
|m0(/p−m)

=
i(

/p−m
) (

1− ∂Σ
∂/p
|m0

) (6.19)

So that

Z =
1

1− ∂Σ
∂/p
|m0

' 1 +
∂Σ

∂/p
|m0 ≡ 1 + δZ

and at leading order

δZ =
∂Σ2

∂/p
|m0

(6.16)
=

α

2π

∫ 1

0

dx

(
−x ln

xΛ2

f(x,m0, µ)
+ (2m0 − xm0)

−2x(1− x)

f(x,m0, µ)

)
= − α

4π

(
ln

Λ2

f
+ finite

)
. (6.20)

Here f = f(x,m0, µ) is the same quantity defined in the second line of (6.17). We’ll

see below that the cutoff-dependence in δZ plays a crucial role in making the S matrix

(for example for the eµ → eµ process we’ve been discussing) cutoff-independent and

finite, when written in terms of physical variables.

6.5 Big picture interlude

OK, I am having a hard time just pounding away at one-loop QED. Let’s take a break

and think about the self-energy corrections in scalar field theory. Then we will step

back and think about the general structure of short-distance senstivity in (relativistic)

QFT, before returning to the QED vertex correction and vacuum polarization.
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6.5.1 Self-energy in φ4 theory

[Zee §III.3] Let’s return to the φ4 theory in D = 3 + 1 for a moment. The Mφφ←φφ

amplitude is not the only place where the cutoff appears.

Above we added a counterterm of the same form as the φ4 term in the Lagrangian.

Now we will see that we need counterterms for everybody:

L = −1

2

(
φ2φ+m2φ2

)
− gP

4!
φ4 − δg

4!
φ4 +

1

2
δZφ2φ+

1

2
δm2φ2.

Here is a way in which φ4 theory is weird: At one loop there is no wavefunction

renormalization. That is,

δΣ1(k) = = −ig

∫ Λ

d̄4q
i

q2 −m2 + iε
= δΣ1(k = 0) ∼ gΛ2

which is certainly quadratically divergent, but totally independent of the external mo-

mentum. This means that when we Taylor expand in k (as we just did in (6.19)), this

diagram only contributes to the mass renormalization.

So let’s see what happens if we keep going:

δΣ2(k) = = (−ig)2

∫
d̄4p

∫
d̄4qiD0(p)iD0(q)iD0(k− p− q) ≡ I(k2,m,Λ).

Here iD0(p) ≡ i
p2−m2+iε

is the free propagator (the factor of i is for later convenience),

and we’ve defined I by this expression. The fact that I depends only on k2 is a

consequence of Lorentz invariance. Counting powers of the loop momenta, the short-

distance bit of this integral is of the schematic form
∫ Λ d8P

P 6 ∼ Λ2, also quadratically

divergent, but this time k2-dependent, so there will be a nonzero δZ ∝ g2. As we just

did for the electron self-energy, we should Taylor expand in k. (We’ll learn more about

why and when the answer is analytic in k2 at k = 0 later.) The series expansion in k2

(let’s do it about k2 = 0 ∼ m2 to look at the UV behavior) is

δΣ2(k2) = A0 + k2A1 + k4A2 + · · ·

where A0 = I(k2 = 0) ∼ Λ2. In contrast, dimensional analysis says A1 = ∂
∂k2 I|k2=0 ∼∫

d8P
P 8 ∼ Λ0+ ∼ ln Λ has two fewer powers of the cutoff. After that it’s clear sailing:

A2 =
(
∂
∂k2

)2
I|k2=0 ∼

∫ Λ d8P
P 10 ∼ Λ−2 is finite as we remove the cutoff, and so are all the

later coefficients.
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Putting this together, the inverse propagator is

D−1(k) = D−1
0 (k)− Σ(k) = k2 −m2 − (δΣ1(0) + A0)︸ ︷︷ ︸

≡a∼Λ2

−k2A1 − k4A2 + · · ·

The · · · here includes both higher orders in g (O(g3)) and higher powers of k2, i.e. higher

derivative terms.

Therefore, the propagator is

D(k) =
1

(1− A1)k2 − (m2 + a)
+ · · · = Z

k2 −m2
P

+ · · ·

with

Z =
1

1− A1

, m2
P =

m2 + a

1− A1

.

Some points to notice: • δZ = A1.

• The contributions An≥2(k2)n can be reproduced by counterterms of the form

Anφ2nφ. Had they been cutoff dependent we would have needed to add such (cutoff-

dependent) counterterms.

• The mass-squared of the scalar field in D = 3+1 is quadratically divergent, while

the mass of the spinor was only log divergent. This UV sensitivity of scalar fields is

ubiquitous (see the homework) and is the source of many headaches.

• On the term wavefunction renormalization: who is φ? Also just a theorist’s letter.

Sometimes (in condensed matter) it is defined by some relation to observation (like the

height of a wave in the mattress), in high energy theory not so much. Classically, we

fixed its (multiplicative) normalization by setting the coefficient of φ2φ to one. If we

want to restore that convention after renormalization, we can make a redefinition of

the field φR ≡ Z−1/2φ. This is the origin of the term ‘wavefunction renormalization’.

A slightly better name would be ‘field renormalization’, but even better would be just

‘kinetic term renormalization’.

Renormalized perturbation theory revisited. The full story for the renormal-

ized perturbation expansion in φ4 theory is

L =
1

2
(∂φ)2 − 1

2
m2
Pφ

2 − gP
4!
φ4 + Lct

with

Lct =
1

2
δZ (∂φ)2 +

1

2
δm2φ2 +

δg
4!
φ4.

Here are the instructions for using it: The Feynman rules are as before: the coupling

and propagator are

= −igP , =
i

k2 −m2
P + iε

(6.21)
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but the terms in Lct (the counterterms) are treated as new vertices, and treated per-

turbatively:

= iδg, = i(δZk2 + δm2).

All integrals are regulated, in the same way (whatever it is). The counterterm couplings

δg, δZ, δm
2 are determined iteratively, as follows: given the δN−1s up to O(gNP ), we fix

each one δ = δN−1 + gNP ∆δN +O(gN+1
P ) by demanding that (6.21) are actually true up

to O(gN+1
P ). This pushes the cutoff dependence back into the muck a bit further.

I say this is the full story, but wait: we didn’t try to compute amplitudes with more

than four φs (such as 3 ← 3 scattering of φ quanta). How do we know those don’t

require new counterterms (like a φ6 term, for example)?

6.5.2 Where is the UV sensitivity?

[still Zee §III.3, Peskin ch. 10. We’ll follow Zee’s discussion pretty closely for a bit.]

Given some process in a relativistic, perturbative QFT, how do we know if it will

depend on the cutoff? We’d like to be able answer this question for a theory with

scalars, spinors, vectors. Here’s how: First, look at each diagram A (order by order

in the loop expansion). Define the ‘superficial’ degree of divergence of A to be DA if

A ∼ ΛDA . A log divergent amplitude has DA = 0 (sometimes it’s called DA = 0+).

Let’s start simple, and study the φ4 theory in D = 4. Consider a connected diagram

A with BE external scalar lines. I claim that DA = 4−BE. Why didn’t it depend on

any other data of the diagram, such as

BI ≡ # of internal scalar lines (i.e., propagators)

V ≡ # of φ4 vertices

L ≡ # of loops

? We can understand this better using two facts of graph theory and some

power counting. I recommend checking my claims below with an example,

such as the one at right.

BI = 8

BE = 4

V = 5

L = 4

Graph theory fact #1: These quantities are not all independent. For a connected

graph,

L = BI − (V − 1). (6.22)
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Math proof6: Imagine placing the vertices on the page and adding the propagators one

at a time. You need V − 1 internal lines just to connect up all V vertices. After that,

each internal line you add necessarily adds one more loop. �

Another way to think about this fact makes clear that L = # of loops = # of

momentum integrals. Before imposing momentum conservation at the vertices, each

internal line has a momentum which we must integrate:
∏BI

α=1

∫
d̄Dqα. We then stick a

δ(D)(
∑
q) for each vertex, but one of these gives the overall momentum conservation

δ(D)(kT ), so we have V − 1 fewer momentum integrals. For the example above, (6.22)

says 4 = 8− (5− 1).

Graph theory fact #2: Each external line comes out of one vertex. Each internal

line connects two vertices. Altogether, the number of ends of lines sticking out of

vertices is

BE + 2BI = 4V

where the RHS comes from noting that each vertex has four lines coming out of it (in

φ4 theory). In the example, this is 4 + 2 · 8 = 4 · 5. So we can eliminate

BI = 2V −BE/2. (6.23)

Now we count powers of momenta:

A ∼
L∏
a=1

∫ Λ

d̄Dka

BI∏
α=1

1

k2
α

.

Since we are interested in the UV structure, I’ve set the mass to zero, as well as all the

external momenta. The only scale left in the problem is the cutoff, so the dimensions

of A must be made up by the cutoff:

DA = [A] = DL− 2BI
(6.22)
= BI(D − 2)−D(V − 1)

(6.23)
= D +

2−D
2

BE + V (D − 4).

If we set D = 3 + 1 = 4, we get DA = 4 − BE as claimed. Notice that with BE = 2

we indeed reproduce DA = 2, the quadratic divergence in the mass renormalization,

and with BE = 4 we get DA = 0, the log divergence in the 2 ← 2 scattering. This

pattern continues: with more than four external legs, DA = 4−BE < 0, which means

the cutoff dependence must go away when Λ→ 0. This is illustrated by the following

6I learned this one from my class-mate M.B. Schulz.
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diagram with BE = 6:

∼
∫ Λ d̄4P

P 6
∼ Λ−2.

So indeed we don’t need more counterterms for higher-point interactions in this theory.

Why is the answer independent of V in D = 4? This has the dramatic consequence

that once we fix up the cutoff dependence in the one-loop diagrams, the higher orders

have to work out, i.e. it strongly suggests that the theory is renormalizable. 7

[End of Lecture 24]

Before we answer this, let’s explore the pattern a bit more. Suppose we include

also a fermion field ψ in our field theory, and suppose we couple it to our scalar by a

Yukawa interaction:

Sbare[φ, ψ] = −
∫
dDx

(
1

2
φ (2 +mφ)φ+ ψ̄ (−/∂ +mψ)ψ + yφψ̄ψ +

g

4!
φ4

)
To find the degree of divergence in an amplitude in this model, we have to independently

keep track of the number fermion lines FE, FI , since a fermion propagator has dimension

[1
/p
] = −1, so that DA = [A] = DL − 2BI − FI . The number of ends-of-fermion-lines

is 2Vy = 2FE + FI and the number of ends-of-boson-lines is Vy + 4Vg = 2BE + BI .

The number of loops is L = BI + FI − (Vy + Vg − 1). Putting these together (I used

Mathematica) we get

DA = D + (D − 4)

(
Vg +

1

2
Vy

)
+BE

(
2−D

2

)
+ FE

(
1−D

2

)
. (6.24)

Again in D = 4 the answer is independent of the number of vertices! Is there something

special about four spacetime dimensions?

To temper your enthusiasm, consider adding a four-fermion interaction: G(ψ̄ψ)(ψ̄ψ)

(or maybe GV (ψ̄γµψ)(ψ̄γµψ) or GA(ψ̄γµγ5ψ)(ψ̄γµγ
5ψ) or any other pile of gamma in

7Why isn’t it a proof of renormalizability? Consider the following integral:

I =

∫ Λ d4p

p10

∫ Λ

d4k.

According to our method of counting, we would say DI = 4 + 4− 10 = −2 and declare this finite and

cutoff-independent. On the other hand, it certainly does depend on the physics at the cutoff. (I bet

it is possible to come up with more pathological examples.) The rest of the work involving ‘nested

divergences’ and forests is in showing that the extra structure in the problem prevents things like I
from being Feynman amplitudes.
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between). When you redo this calculation on the homework, you’ll find that in D = 4

a diagram (for simplicity, one with no φ4 or Yukawa interactions) has

DA = 4− (1)BE −
(

3

2

)
FE + 2VG.

This dependence on the number of four-fermi vertices means that there are worse and

worse divergences as we look at higher-order corrections to a given process. Even worse,

it means that for any number of external lines FE no matter how big, there is a large

enough order in perturbation theory in G where the cutoff will appear! This means

we need δn(ψ̄ψ)n counterterms for every n, which we’ll need to fix with physical input.

This is a bit unappetizing. However, when we remember that we only need to make

predictions to a given precision (so that we only need to go to a finite order in this

process) we will see that such theories are nevertheless quite useful.

6.5.3 Naive scale invariance in field theory

[Halpern] Consider a field theory of a scalar field φ in D spacetime dimensions, with

an action of the form

S[φ] =

∫
dDx

(
1

2
∂µφ∂

µφ− gφp
)

for some constants p, g. Which value of p makes this scale invariant? (That is: when

is g dimensionless, and hence possibly the coupling for a renormalizable interaction.)

Naive dimensions:

[S] = [~] = 0, [x] ≡ 1, [dDx] = D, [∂] = −1

The kinetic term tells us the engineering dimensions of φ:

0 = [Skinetic] = D − 2 + 2[φ] =⇒ [φ] =
2−D

2
.

Notice that the D = 1 case agrees with our quantum mechanics counting from §6.1.

Quantum field theory in D = 1 spacetime dimensions is quantum mechanics. (Quan-

tum field theory in D = 0 spacetime dimensions is integrals. This sounds trivial but

it actually has some useful lessons for us in the form of random matrix theory and

for understanding the large-order behavior of perturbation theory and its relation to

non-perturbative effects. More later on this, I hope.)

Then the self-interaction term has dimensions

0 = [Sinteraction] = D + [g] + p[φ] =⇒ [g] = −(D + p[φ]) = −
(
D + p

2−D
2

)
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We expect scale invariance when [g] = 0 which happens when

p = pD ≡
2D

D − 2
,

i.e. the scale invariant scalar-field self-interaction in D spacetime dimensions is φ
2D
D−2 .

D 1 2 3 4 5 6 ... ∞
[φ] −1

2
0 1

2
1 3/2 2 ... D/2

scale-inv’t p ≡ pD −2 ∞? 6 4 10/3 3 ... 2

? What is happening in D = 2? The field is dimensionless, and so any power of φ

is naively scale invariant, as are more complicated interactions like g(φ)(∂φ)2, where

the coupling g(φ) is a function of φ. This allows for scale-invariant non-linear sigma

models; we will explore this further later on.

In dimensions where we get fractional powers, this isn’t so nice.

Notice that the mass term ∆S =
∫
dDxm

2

2
φ2 gives

0 = D + 2[m] + 2[φ] =⇒ [m] = −1 ∀D <∞.

What are the consequences of this engineering dimensions calculation in QFT? For

D > 2, an interaction of the form gφp has

[g] = D · p− pD
pD


> 0 when p > pD, non-renormalizable or irrelevant

= 0 when p = pD, renormalizable or marginal

< 0 when p < pD, super-renormalizable or relevant.

(6.25)

Consider the ‘non-renormalizable’ case. Suppose we calculate in QFT some quantity f

with [f ] as its naive dimension, in perturbation theory in g, e.g. by Feynman diagrams.

We’ll get:

f =
∞∑
n=0

gncn

with cn independent of g. So

[f ] = n[g] + [cn] =⇒ [cn] = [f ]− n[g]

So if [g] > 0, cn must have more and more powers of some mass (inverse length) as

n increases. What dimensionful quantity makes up the difference? Sometimes it is

masses or external momenta. But generically, it gets made up by UV divergences (if
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everything is infinite, dimensional analysis can fail, nothing is real, I am the walrus).

More usefully, in a meaningful theory with a UV cutoff, ΛUV , the dimensions get made

up by the UV cutoff, which has [ΛUV ] = −1. Generically: cn = c̃n (ΛUV )n[g], where c̃n
is dimensionless, and n[g] > 0 – it’s higher and higher powers of the cutoff.

Consider the renormalizable (classically scale invariant) case: [cn] = [f ], since [g] =

0. But in fact, what you’ll get is something like

cn = c̃n logν(n)

(
ΛUV

ΛIR

)
,

where ΛIR is an infrared cutoff, [ΛIR] = −1.

Some classically scale invariant examples (so that m = 0 and the bare propagator

is 1/k2) where you can see that we get logs from loop amplitudes:

φ4 inD = 4: φ6 inD = 3:

φ3 in D = 6: In D = 2, even the propagator for a massless

scalar field has logs:

〈φ(x)φ(0)〉 =

∫
d̄2k

e−ikx

k2
∼ log

|x|
ΛUV

.

The terms involving ‘renormalizable’ in (6.25) are somewhat old-fashioned and come

from a high-energy physics point of view where the short-distance physics is unkown,

and we want to get as far as we can in that direction with our limited knowledge (in

which case the condition ‘renormalizability’ lets us get away with this indefinitely). The

latter terms are natural in a situation (like condensed matter physics) where we know

some basically correct microscopic description but want to know what happens at low

energies. Then an operator like 1
M24φ

28 whose coefficient is suppressed by some large

mass scale M is irrelevant for physics at energies far below that scale. Inversely, an

operator like m2φ2 gives a mass to the φ particles, and matters very much (is relevant)

at energies E < m. In the marginal case, the quantum corrections have a chance to

make a big difference.
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6.6 Vertex correction in QED

[Peskin chapter 6, Schwartz chapter 17, Zee chapter III.6] Back to work on QED. The

vertex correction has some great physics payoffs:

• We’ll cancel the cutoff dependence we found in the S matrix from δZ.

• We’ll compute g−2 (the anomalous magnetic moment) of the electron, the locus

of some of the most precise agreement between theory and experiment. (Actually

the agreement is so good that it’s used as the definition of the fine structure

constant. A similar calculation gives the leading anomalous magnetic moment of

the muon.)

• We’ll see that the exclusive differential cross section
(
dσ
dΩ

)
eµ←eµ that we’ve been

considering is not really an observable. Actually it is infinity! (Actually it is zero,

but the one-loop correction is infinity.) The key word here is ‘exclusive,’ which

means that we demand that the final state is exactly one electron and one muon

and absolutely nothing else. Think for a moment about how you might do that

measurement.

This is an example of an IR divergence. While UV divergences mean you’re

overstepping your bounds (by taking too seriously your Lagrangian parameters

or your knowledge of short distances), IR divergences mean you are asking the

wrong question.

To get started, consider the following class of diagrams.

=

≡ iM = ie2 (ū(p′)Γµ(p, p′)u(p))
1

q2
ū(K ′)γµu(K) (6.26)

The shaded blob is the vertex function Γ. The role of the light blue factors is just

to make and propagate the photon which hits our electron, let’s forget about them.

Denote the photon momentum by q = p′−p. Then q2 = 2m2−2p′ ·p. We’ll assume that

the electron momenta p, p′ are on-shell, but qµ is not, as in the eµ scattering process.

Before calculating the leading correction to the vertex Γµ = γµ +O(e2), let’s think

about what the answer can be. It is a vector made from p, p′, γµ and m, e and numbers.
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It can’t have any γ5 or εµνρσ by parity symmetry of QED. So on general grounds we

can organize it as

Γµ(p, p′) = Aγµ +B(p+ p′)µ + C(p− p′)µ (6.27)

where A,B,C are Lorentz-invariant functions of p2 = (p′)2 = m2, p · p′, /p, /p′. But, for

example, /pγµu(p) = (mγµ − pµ)u(p) which just mixes up the terms; really A,B,C are

just functions of the momentum transfer q2. Gauge invariance, in the form of the Ward

identity, says that contracting the photon line with the photon momentum should give

zero:

0
Ward
= qµū(p′)Γµu(p)

(6.27)
= ū(p′)

A /q︸︷︷︸
= /p′−/p

ū(p′)...u(p)
= m−m=0

+B (p+ p′) · (p− p′)︸ ︷︷ ︸
=m2−m2=0

+Cq2

u(p)

Therefore 0 = Cq2ū(p′)u(p) for general q2 and general spinors, so C = 0. This is the

moment for the Gordon identity to shine:

ū(p′)γµu(p) = ū(p′)

(
pµ + p

′µ

2m
+

iσµνqν
2m

)
u(p)

(where σµν ≡ i
2
[γµ, γν ]) can be used to eliminate the p + p′ term (actually this is why

we didn’t include a γµν term. The Gordon identity shows that the QED interaction

vertex ū(p′)γµu(p)Aµ contains a magnetic moment bit in addition to the p + p′ term

(which is there for a charged scalar field).

It is then convenient (and conventional) to parametrize the vertex in terms of the

two form factors F1,2:

Γµ(p, p′) = γµF1(q2) +
iσµνqν

2m
F2(q2).

This little monstrosity has the complete information about the coupling of the electron

to the electromagnetic field, such as for example a background electromagnetic field.

The first term at zero momentum eF1(q2 = 0) is the electric charge of the electron (if

you don’t believe it, there are some details on p. 186 of Peskin). Since the tree-level bit

of F1 is 1, if by the letter e here we mean the actual charge, then we’d better include

counterterms ( Lct 3 ψ̄δeγµAµψ) to make sure it isn’t corrected: F1(0) = 1.

On hw 9 of last quarter you showed (or see Peskin p. 187) that the magnetic moment

of the electron is

~µ = g
e

2m
~S,
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where ~S ≡ ξ† ~σ
2
ξ is the electron spin. Comparing with the vertex function, this says

that the g factor is

g = 2(F1(0) + F2(0)) = 2 + 2F2(0) = 2 +O(α).

We see that the anomalous magnetic moment of the electron is 2F2(q2 = 0).

[End of Lecture 25]

Now that we have some expectation about the form of the answer, and some ideas

about what it’s for, we sketch the evaluation of the one-loop QED vertex correction:

= −e3

∫
d̄4k ū(p′)γν

/k
′
+me

(k′)2 −m2
e

γµ
/k +me

k2 −m2
e

γρu(p) · −ηνρ
(p− k)2 −m2

γ

with k′ ≡ k + q.

(1) Feynman parameters again. The one we showed before can be rewritten more

symmetrically as:

1

AB
=

∫ 1

0

dx

∫ 1

0

dy δ(x+ y − 1)
1

(xA+ yB)2

Now how can you resist the generalization8:

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
2

(xA+ yB + zC)3

So, set A = (k′)2 −m2
e, B = k2 −m2

e, C = (p− k)2 −m2
γ (with the appropriate iεs), so

that the integral we have to do is∫
d̄4kNµ

(k2 + k · (· · · ) + · · · )3
.

(2) Complete the square, ` = k − zp+ xq to get
∫

d̄4`Nµ

(`2−∆)3 where

∆ = −xyq2 + (1− z)2m2 + zm2
γ.

8Peskin outlines a proof by induction of the whole family of such identities on page 190.
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The `-dependence in the numerator is either 1 or `µ or `µ`ν . In the integral over `, the

second averages to zero, and the third averages to ηµν`2 1
4
. As a result, the momentum

integrals we need are just ∫
d̄D`

(`2 −∆)m
,

∫
d̄D` `2

(`2 −∆)m
.

Right now we only need D = 4 and m = 3, but it turns out to be quite useful to think

about them all at once:∫
d̄D` `2

(`2 −∆)m
= −D

2

i

(4π)D/2
1

∆1−D/2 Γ

(
2− d

2

)
∫

d̄D`

(`2 −∆)m
=

i

(4π)D/2
1

∆2−D/2 Γ

(
4− d

2

)
.

Notice that these integrals are not equal to infinity when the parameter D is not an

integer. This is the idea behind dimensional regularization.

(0) But for now let’s persist in using the Pauli Villars regulator. (I call this step

(0) instead of (3) because it should have been there all along.) Here this means we

subtract from the amplitude the same quantity with mγ replaced by Λ2. The dangerous

bit comes from the `2 term we just mentioned.

The numerator is

Nµ = ū(p′)γν
(
/k + /q +me

)
γµ (/k +me) γν

= −2 (Aū(p′)γµu(p) + Bū(p′)σµνqνu(p) + Cū(p′)qµu(p)) (6.28)

where

A =
1

2
`2 + (1− x)(1− y)q2 + (1− 4z + z2)m2

B = imz(1− z)

C = m(z − 2)(x− y) . (6.29)

The blood of many men was spilled to arrive at these simple expressions (actually

most of the algebra is done explicitly on page 319 of Schwartz). Now you say: but you

promised there would be no term like C because of the Ward identity. Indeed I did and

indeed there isn’t because C is odd in x↔ y while everything else is even, so this term

integrates to zero. The first term is a correction to the charge of the electron and will

be UV divergent. More explicitly, we get∫
d̄4`

(
`2(

`2 −∆mγ

)3 −
`2

(`2 −∆Λ)3

)
=

i

(4π)2
ln

∆Λ

∆mγ

.

The other bits are finite, and we ignore the terms that go like negative powers of Λ.
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6.6.1 Anomalous magnetic moment

The second term B contains the anomalous magnetic moment:

F2(q2) =
2m

e
· (the term with B )

=
2m

e
4e3m

∫
dxdydzδ(x+ y + z − 1)z(1− z)

∫
d̄4`

(`2 −∆)3︸ ︷︷ ︸
= −i

32π2∆

=
α

π
m2

∫
dxdydzδ(x+ y + z − 1)

z(1− z)

(1− z)2m2 − xyq2
. (6.30)

The magnetic moment is the long-wavelength bit of this:

F2(q2 = 0) =
α

π
m2

∫ 1

0

dz

∫ 1−z

0

dy
z

(1− z)m2
=

α

2π
.

g = 2 +
α

π
+O(α2).

A rare opportunity for me to plug in numbers: g = 2.00232.

6.6.2 IR divergences mean wrong questions.

There is a term in the numerator from the Aγµ bit∫
d̄4`

(`2 −∆)3
= c

1

∆

(with c = − i
32π2 again), but without the factor of z(1 − z) we had in the magnetic

moment calculation. It looks like we’ve gotten away without having to introduce a UV

regulator here, too (so far). But now look at what happens when we try to do the

Feynman parameter integrals. For example, at q2 = 0, we get (if we had mγ = 0)∫
dxdydzδ(x+y+z−1)

m2(1− 4z + z2)

∆
= m2

∫ 1

dz

∫ 1−z

0

dy
−1 + (1− z)(3− z)

(1− z)2m2
=

∫ 1

dz
−2

(1− z)
+finite.

In fact it’s divergent even when q2 6= 0. This is a place where we actually need to

include the photon mass, mγ, for our own safety.

The (IR singular bit of the) vertex (to O(α)) is of the form

Γµ = γµ
(

1− α

2π
fIR(q2) ln

(
−q2

mγ
2

))
+ stuff which is finite as mγ → 0. (6.31)
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Notice that the IR divergent stuff is independent of p. So it looks like we are led to

conclude (
dσ

dΩ

)
µe←µe

=

(
dσ

dΩ

)
Mott

(
1− α

π
fIR(q2) ln

(
−q2

mγ
2

))
+O

(
α2
)

which blows up when we remove the fake photon mass mγ → 0.

[Schwartz §20.1] I wanted to just quote the above result for (6.31) but I lost my

nerve, so here is a bit more detail leading to it. The IR dangerous bit comes from the

second term in A above. That is,

F1(q2) = 1 + f(q2) + δ1 +O(α2)

with

f(q2) =
e2

8π2

∫ 1

0

dxdydzδ(x+y+z−1)

(
ln
zΛ2

∆
+
q2(1− x)(1− y) +m2

e(1− 4z + z2)

∆

)
.

δ1 here is a counterterm for the ΨγµAµΨ vertex. e

We can be more explicit if we consider −q2 � m2
e so that we can ignore the electron

mass everywhere. Then we could choose the counterterm δ1 so that

1 = F1(0) =⇒ δ1 = −f(0)
me/q→0→ − e2

8π2

1

2
ln

Λ2

m2
γ

.

And the form of f(q2) is

f(q2)|me=0 =
e2

8π2

∫
dxdydzδ(x+ y + z − 1)

ln
(1− x− y)Λ2

∆︸ ︷︷ ︸
IR finite

+
q2(1− x)(1− y)

−xyq2 + (1− x− y)m2
γ


= − e2

16π2

(
ln2 −q2

m2
γ

+ 3 ln
−q2

m2
γ

)
+ finite.

In doing the integrals, we had to remember the iε in the propagators, which can be

reproduced by the replacement q2 → q2 +iε. This ln2(q2/mγ) is called a Sudakov double

logarithm. Notice that taking differences of these at different q2 will not make it finite.

Diversity and inclusion to the rescue. Before you throw up your hands in

despair, I would like to bring to your attention another consequence of the massless-

ness of the photon: It means real (as opposed to virtual) photons can be made with

arbitrarily low energy. But a detector has a minimum triggering energy: the detector
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works by particles doing some physical something to stuff in the detector, and it has a

finite energy resolution. This means that a process with exactly one e and one µ in the

final state cannot be distinguished from a process ending in eµ plus a photon

of arbitrarily small energy, such as would result from (final-state radiation)

or (initial-state radiation). This ambiguity is present for any process with

external charged particles.

[End of Lecture 26]

Being more inclusive, and allowing also photons in the final state, we must consider

amplitudes of the form

ū(p′)M0(p′, p)u(p) ≡ −i




in terms of which the more inclusive amplitudes look like

−i




= ū(p′)γµ e
/p′+/k−meM0(p′, p)u(p)ε?µ(k) + ū(p′)M0(p′, p) e

/p−/k−meγ
µu(p)ε?µ(k) .

Now, by assumption the photon is real (k2=0) and it is soft, in the sense that k0 < Ec,

the detector cutoff. So we can approximate the numerator of the second term as(
/p− /k +me

)
γµu(p) '

(
/p+me

)
γµu(p) = (2pµ + γµ

(
−/p+me

)
)u(p)︸ ︷︷ ︸

=0

= 2pµu(p).

In the denominator we have e.g. (p− k)2 −m2 = p2 −m2
e − 2p · k + k2 ∼ −2p · k since

the electron is on shell and k � p. Therefore

M (eµ+ one soft γ ← eµ) = eū(p′)M0(p′, p)u(p)

(
p′ · ε?

p′ · k
− p · ε?

p · k

)
(6.32)
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This is bremsstrahlung. Before we continue this calculation to find the inclusive

amplitude which a real detector actually measures, let’s pause to relate the previous

expression to some physics we know. Where have we seen this kind of expression

p
′µ

p′ · k + iε
− pµ

p · k − iε
≡ 1

ie
j̃µ(k)

before? Notice that the iε are different because one comes from final state and one

from initial. Well, this object is the Fourier transform j̃µ(k) =
∫
d4x e+ikxjµ(x) of the

current

jµ(x) = e

∫
dτ
dyµ

dτ
δ(4)(x− y(τ))

associated with a particle which executes a piecewise linear motion 9

y(τ) =

{
pµ

m
τ, τ < 0

p
′µ

m
τ, τ > 0

.

This is a good approximation to the motion a free particle which experiences a sudden

acceleration; sudden means that the duration of the pulse is short compared to ω−1

for any frequency we’re going to measure. The electromagnetic radiation that such

an accelerating charge produces is given classically by Maxwell’s equation: Ãµ(k) =

− 1
k2 j̃

µ(k).

I claim further that the factor fIR(q2) = α
π

ln
(
−q2

m2

)
(which entered our lives in

(6.31)) arises classically as the number of soft photons in each decade of wavenumber.

You can figure this out by plugging Ãµ(k) = − 1
k2 j̃

µ(k) into the electromagnetic energy
1
2

∫
d3x (E2 +B2). See Peskin §.6.1 for help.

(
dσ

dΩ

)Eγ<Ec
µeγsoft←µe

=

(
dσ

dΩ

)
Mott

e2

∫ Ec

0

d̄3k

2Ek︸ ︷︷ ︸
γ phase space

∣∣∣∣2p · ε?2p · k
− 2p′ · ε?

2p′ · k

∣∣∣∣2 Ek=|~k|∼
∫

0

d3k

k3
=∞.

Just like we must stick to our UV regulators like religious zealots, we must cleave

tightly to the consistency of our IR regulators: we need to put back the photon mass:

Ek =

√
~k2 +mγ

2

9Check it:∫
d4x e+ikxjµ(x) = e

∫ ∞
0

dτ
p
′µ

m
e
i
(
k·p′
m +iε

)
τ − e

∫ 0

−∞
dτ
pµ

m
ei(

k·p
m −iε)τ = j̃µ(k).

Notice that the iε are convergence factors in the Fourier transforms.

41



which means that the lower limit of the k integral gets cut off at mγ:∫ Ec

0

dk

Ek
=

(∫ mγ

0

+

∫ Ec

mγ

)
dk√

k2 +mγ
2
∼
∫ mγ

0

dk

mγ︸ ︷︷ ︸
=1

+

∫ Ec

mγ

dk

k︸ ︷︷ ︸
ln Ec
mγ

.

Being careful about the factors, the actual cross section measured by a detector with

energy resolution Ec is10(
dσ

dΩ

)observed

=

(
dσ

dΩ

)
eµ←µe

+

(
dσ

dΩ

)Eγ<Ec
µeγsoft←µe

+O(α3)

=

(
dσ

dΩ

)
Mott

1−α
π
fIR(q2) ln

(
−q2

mγ
2

)
︸ ︷︷ ︸

vertex correction

+
α

π
fIR(q2) ln

(
E2
c

mγ
2

)
︸ ︷︷ ︸

soft photons


=

(
dσ

dΩ

)
Mott

(
1− α

π
fIR(q2) ln

(
−q2

E2
c

))

The thing we can actually measure is independent of the IR regulator photon mass mγ,

and finite when we remove it. On the other hand, it depends on the detector resolution.

Something you may have been tempted to regard as an ugly detail has saved the day.

I didn’t show explicitly that the coefficient of the log is the same function fIR(q2).

In fact this function is fIR(q2) = 1
2

log(−q2/m2), so the product fIR ln q2 ∼ ln2 q2 is

called the Sudakov double logarithm. A benefit of the calculation which shows that

the same fIR appears in both places (Peskin chapter 6.5) is that it also shows that

this pattern persists at higher order in α: there is a ln2(q2/mγ
2) dependence in the

two-loop vertex correction, and a matching − ln2(E2
c /mγ

2) term in the amplitude to

emit two soft photons. There is a 1
2!

from Bose statistics of these photons. The result

exponentiates, and we get

e−
α
π
f ln(−q2/mγ2)e−

α
π
f(E2

c/mγ
2) = e−

α
π
f ln(−q2/E2

c ).

You may be bothered that I’ve made all this discussion about the corrections from

the electron line, but said nothing about the muon line. But the theory should make

10Notice that we add the cross-sections, not the amplitudes for these processes with different final

states (despite some salacious rumors to the contrary in last week’s lecture). Here’s why: even though

we don’t measure the existence of the photon, something does: it gets absorbed by some part of the

apparatus or the rest of the world and therefore becomes entangled some of its degrees of freedom;

when we fail to distinguish between those states, we trace over them, and this erases the interference

terms we would get if we summed the amplitudes.
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sense even if the electron and muon charges Qe, Qm were different, so the calculation

should make sense term-by-term in an expansion in Qm.

Some relevant names for future reference: The name for the guarantee that this

always works in QED is the Bloch-Nordsieck theorem. Closely-related but more serious

issues arise in QCD, the theory of quarks and gluons; this is the beginning of the story

of jets (a jet is some IR-cutoff dependent notion of a QCD-charged particle plus the

cloud of stuff it carries with it) and parton distribution functions.

Sketch of exponentiation of soft photons. [Peskin §6.5] Consider a diagram

with n soft external photons, summed over ways of distributing them on an initial and

final electron line:

n∑
nf=1

= ū(p′)iM0u(p)en
n∏

α=1

(
p
′µα

p′ · kα
− pµα

p · kα

)
.

Here the difference in each factor is just as in (6.32), one term from initial and one from

final-state emission; expanding the product gives the sum over nf = 1−ni, the number

coming from the final-state line. From this expression, we can make a diagram with a

soft-photon loop by picking an initial line α and a final line β setting kα = −kβ ≡ k

and tying them together with a propagator and summing over k:

=
e2

2

∫
d̄4k
−iηρσ
k2

(
p′

p′ · k
− p

p · k

)ρ(
p
′

−p′ · k
− p

−p · k

)σ

The factor of 1
2

accounts for the symmetry under exchange of α ↔ β. For the case of

n = 2, this is the whole story, and this is

ūiM0u ·X =

  ·
 

soft part

from which we conclude that

X = − α

2π
fIR(q2) ln

(
−q2

m2
γ

)
+ finite.

Taking the most IR-divergent bit with m virtual soft photons (order αm) for each m
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gives

Mvirtual soft =
∞∑
m=0

1

m!


 =

︸ ︷︷ ︸
iM0


∑
m

1

m
Xm

︸ ︷︷ ︸
eX

.

Now consider the case of one real external soft (E ∈ [mγ, Ec]) photon in the final

state. The cross section is

Y ≡ dσ1γ =

∫
dΠ
∑
pols

εµε?ν︸ ︷︷ ︸
=−ηµν

|M|2

=

∫
d̄3k

2Ek
(−ηµν) e2

(
p′

p′ · k
− p

p · k

)µ(
p
′

−p′ · k
− p

−p · k

)ν
=
α

π
fIR(q2) ln

(
E2
c

m2
γ

)
.

Therefore, the exclusive cross section, including contributions of soft real photons gives

∞∑
n=0

dσnγ = dσ0

∑
n

1

n!
Yn = dσ0e

Y.

Here the n! is because the final state contains n identical bosons.

Putting the two effects together gives the promised cancellation of mγ dependence

to all orders in α:

dσ = dσ0e
2XeY

= dσ0 exp

(
−α
π
fIR(q2) ln

−q2

m2
γ

+
α

π
fIR(q2) ln

E2
c

m2
γ

)
= dσ0 exp

(
−α
π
fIR(q2) ln

−q2

E2
c

)
This might seem pretty fancy, but unpacking the sum we did, the basic statement is

that the probability of finding n photons with energy in a given (low-energy) range

[E−, E+] is

P[E−,E+] =
1

n!
λne−λ, λ =

α

π
fIR(q2) ln

E+

E−
= 〈n〉 =

〈
n2
〉
− 〈n〉2

a Poisson distribution. This is just what one finds in a coherent state of the radiation

field.
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6.6.3 Some magic from gauge invariance of QED

We found that the self-energy of the electron gave a wavefunction renormalization

factor

Z2 = 1 +
∂Σ

∂/p
|/p=m0 +O(e4) = 1− α

4π
ln

Λ2

f
+ finite.

We care about this because there is a factor of Z2 in the LSZ formula for an S-matrix

element with two external electrons. On the other hand, we found a cutoff-dependent

correction to the vertex eγµF1(q2) of the form

F1(q2) = 1 +
α

4π
ln

Λ2

f ′
+ finite.

Combining these together

Seµ←eµ =
(√

Z2(e)
)2 (

+
( )

+ · · ·
)

=

(
1− α

4π
ln

Λ2

f
+ · · ·

)
e2ū(p′)

(
γµ
(

1 +
α

4π
ln

Λ2

f ′
+ · · ·

)
+ α

iσµνqν
2m

)
u(p)

the UV divergence from the vertex cancels the one in the self-energy. Why did this have

to happen? During our discussion of the IR divergences, I mentioned a counterterm δ1

for the vertex. But how many counterterms do we get here? Is there a point of view

which makes this cancellation obvious? Notice that the · · · multiplying the γµ term

still contain the vacuum polarization diagram, which is our next subject, and which

may be (is) cutoff dependent. Read on.

6.7 Vacuum polarization

[Zee, III.7] We’ve been writing the QED lagrangian as

L = ψ̄
(
/∂ + ie /̃A−m

)
ψ − 1

4
F̃µνF̃

µν .

I’ve put tildes on the photon field because of what’s about to happen: Suppose we

rescale the definition of the photon field eÃµ ≡ Aµ, eF̃µν ≡ Fµν . Then the coupling e

moves to the photon kinetic term:

L = ψ̄
(
/∂ + i /A−m

)
ψ − 1

4e2
FµνF

µν

instead of measuring the coupling between electrons and photons, the coupling constant

e measures the difficulty a photon has propagating through space:

〈AµAν〉 ∼
−iηµνe

2

q2
.
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None of the physics is different, since each internal photon line still has two ends on a

ψ̄ /Aψ vertex.

But from this point of view it is clear that the magic of the previous subsection is

a consequence of gauge invariance, here’s why: the demand of gauge invariance relates

the coefficients of the ψ̄ /∂ψ and ψ̄ /Aψ terms11. Therefore, any counterterm we need for

the ψ̄ /∂ψ term (which comes from the electron self-energy correction and is called δZ2)

must be the same as the counterterm for the ψ̄ /Aψ term (which comes from the vertex

correction and is called δZ1. No magic, just gauge invariance.

A further virtue of this reshuffling of the factors of e (emphasized by Zee on page

205) arises when we couple more than one species of charged particle to the electromag-

netic field, e.g. electrons and muons or, more numerously, protons: once we recognize

that charge is a property of the photon itself, it makes clear that quantum corrections

cannot mess with the ratio of the charges. A deviation from −1 of the ratio of the

charges of electron and proton might seem plausible given what a mess the proton is,

and would be a big deal for atoms. Gauge invariance forbids it.

[End of Lecture 27]

Just as we defined the electron self-energy (amputated 2-point function) as =

−iΣ(/p) (with two spinor indices implied), we define the photon self-energy as

+iΠµν(q
2) ≡ = + +O(e4).

It is a function of q2 by Lorentz symmetry. (The reason for the difference in sign is

that the electron propagator is +i
/p−m while the photon propagator is −iηµν

q2 .) We can

parametrize the answer as

Πµν(q2) = A(q2)ηµν +B(q2)qµqν .

The Ward identity says

0 = qµΠµν(q2) =⇒ 0 = Aqν +Bq2qν =⇒ B = A/q2.

Let A = Πq2 so that

Πµν(q2) = Π(q2)q2

(
ηµν − qµqν

q2

)
︸ ︷︷ ︸

=∆µν
T

.

11Notice that the gauge transformation of the rescaled Aµ is Aµ → Aµ+q∂µλ(x), ψ(x)→ eiqλ(x)ψ(x)

so that Dµψ ≡ (∂ + qiA)µ ψ → eiqλDµψ where q is the charge of the field (q = −1 for the electron).

This is to be contrasted with the transformation of Ãµ → Ãµ − q∂µλ(x)/e.
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This object ∆µν
T is a projector

∆µ
T ρ∆T

ρ
ν = ∆µ

T ρ (6.33)

onto modes transverse to qµ. Recall that we can take the bare propagator to be

=
−i∆T

q2

without changing any gauge-invariant physics. This is useful because then

G̃(2)(q) = + · · ·
(6.33)
=
−i∆T

q2

(
1 + iΠq2∆T

(
−i∆T

q2

)
+ iΠq2∆T

(
−i∆T

q2

)
iΠq2∆T

(
−i∆T

q2

)
+ · · ·

)
=
−i∆T

q2

(
1 + Π∆T + Π2∆T + · · ·

)
=
−i∆T

q2

1

1− Π(q2)
. (6.34)

Does the photon get a mass? If the thing I called A above q2Π(q2)
q2→0→ A0 6= 0 (that

is Π(q2) ∼ A0

q2 or worse), then G̃
q2→0∼ 1

q2−A0
does not have a pole at q2 = 0. If Π(q2) is

regular at q2 = 0, then the photon remains massless. In order to get such a singularity in

the photon self energy Π(q2) ∼ A0

q2 we need a process like δΠ ∼ ,

where the intermediate state is a massless boson with propagator ∼ A0

q2 . As I will

explain below, this is the Higgs mechanism (not the easiest way to understand it).

The Ward identity played an important role here. Why does it work for the vacuum

polarization?

qµΠµν
2 (q2) = qµ ∝ e2

∫
d̄4ptr

1

/p+ /q −m
/q

1

/p−m
γν .

But here is an identity:

1

/p+ /q −m
/q

1

/p−m
=

1

/p−m
− 1

/p+ /q −m
.

Now, if we shift the integration variable p → p + q in the second term, the two terms

cancel.

Why do I say ‘if’? If the integral depends on the UV limit, this shift is not innocu-

ous. So we have to address the cutoff dependence.

In addition to the (lack of) mass renormalization, we’ve figured out that the elec-

tromagnetic field strength renormalization is

Zγ ≡ Z3 =
1

1− Π(0)
∼ 1 + Π(0) +O(e4).
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We need Zγ for example for the S-matrix for processes with external photons, like

Compton scattering.

Claim: If we do it right12, the cutoff dependence looks like13:

Π2(q2) =
α0

4π

−2

3
ln Λ2 + 2D(q2)︸ ︷︷ ︸

finite


where Λ is the UV scale of ignorance. The photon propagator gets corrected to

e2
0∆T

q2
 

Z3e
2
0∆T

q2
,

and Z3 = 1
1−Π(0)

blows up logarithmically if we try to remove the cutoff. You see

that the fine structure constant α0 =
e20
4π

has acquired the subscript of deprecation: we

can make the photon propagator sensible while removing the cutoff if we are willing to

recognize that the letter e0 we’ve been carrying around is a fiction, and write everything

in terms of e ≡
√
Z3e0 where e2

4π
= 1

137
is the measured fine structure constant. To this

order, then, we write

e2
0 = e2

(
1 +

α0

4π

2

3
ln Λ2

)
+O(α2). (6.35)

m0 = m+O(α0) = m+O(α). (6.36)

Inverting the relationship perturbatively, the renormalized charge is

e2 = e2
0

(
1− α0

4π

2

3
ln Λ2 +O(α2)

)
– in QED, the quantum fluctuations reduce the charge, as you might expect from the

interpretation of this phenomenon as dielectric screening.

In the example case of eµ← eµ scattering, the UV cutoff dependence looks like

Seµ←eµ =
√
Z2
e

(
1− α0

4π
ln Λ2 +

α0

2π
A(m0)

)
e2

0

Lµū(p′)

[
γµ
(

1 +
α0

4π
ln Λ2 +

α0

2π
(B +D) +

α0

4π

(
−2

3
ln Λ2

))
+

iσµνqν
2m

α0

2π
C(q2,m0)

]
u(p)

12What I mean here is: if we do it in a way which respects the gauge invariance and hence the

Ward identity. The simple PV regulator we’ve been using does not quite do that. However, an only

slightly more involved implementation, explained in Zee page 202-204, does. Alternatively, we could

use dimensional regularization everywhere.
13The factor in front of the ln Λ can be made to look like it does in other textbooks using α = e2

4π ,

so that
α0

4π

(
2

3
ln Λ2

)
=

e2
0

12π2
ln Λ.
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= e2Lµū(p′)

[
γµ
(

1 +
α

2π
(A+B +D)

)
+

iσµνqν
2m

α

2π
C

]
u(p) +O(α2) (6.37)

where Lµ is the stuff from the muon line, and A,B,C,D are finite functions of m, q2.

In the second step, two things happened: (1) we cancelled the UV divergences from

the Z-factor and from the vertex correction: this had to happen because there was no

possible counterterm. (2) we used (6.35) and (6.36) to write everything in terms of the

measured e,m.

Claim: this works for all processes to order α2. For example, Bhabha scattering

gets a contribution of the form

∝ e0
1

1− Π(0)
e0 = e2.

In order to say what are A,B,D we need to specify more carefully a renormalization

scheme. To do that, I need to give a bit more detail about the integral.

6.7.1 Under the hood

The vacuum-polarization contribution of a fermion of mass m and charge e at one loop

is

q,µ q,ν = −
∫

d̄Dktr

(
(ieγµ)

i (/k +m)

k2 −m2
(ieγν)

i
(
/q + /k +m

)
(q + k)2 −m2

)
The minus sign out front is from the fermion loop. Some boiling, which you can find

in Peskin (page 247) or Zee (§III.7), reduces this to something manageable. The steps

involved are: (1) a trick to combine the denominators, like the Feynman trick 1
AB

=∫ 1

0
dx
(

1
(1−x)A+xB

)2

. (2) some Dirac algebra, to turn the numerator into a polynomial

in k, q. As Zee says, our job in this course is not to train to be professional integrators.

The result of this boiling can be written

iΠµν(q) = −e2

∫
d̄D`

∫ 1

0

dx
Nµν

(`2 −∆)2

with ` = k+xq is a new integration variable, ∆ ≡ m2−x(1−x)q2, and the numerator

is

Nµν = 2`µ`ν − ηµν`2 − 2x(1− x)qµqν + ηµν
(
m2 + x(1− x)q2

)
+ terms linear in `µ .
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At this point I have to point out a problem with applying the regulator we’ve

been using (this is a distinct issue from the choice of RG scheme). With a euclidean

momentum cutoff, the diagram gives something of the form

iΠµν ∝ e2

∫ Λ

d4`E
`2
Eη

µν

(`2
E −∆)

2 + ... ∝ e2Λ2ηµν

This is NOT of the form Πµν = ∆µν
T Π(p2); rather it produces a correction to the photon

mass proportional to the cutoff. What happened? Our cutoff was not gauge invariant.

Oops.14

Fancier PV regularization. [Zee page 202] We can fix the problem by adding

also heavy Pauli-Villars electron ghosts. Suppose we add a bunch of them with masses

ma and couplings
√
cae to the photon. Then the vacuum polarization is that of the

electron itself plus

−
∑
a

ca

∫
d̄Dktr

(
(ieγµ)

i

/q + /k −ma

(ieγν)
i

/q −ma

)
∼
∫ Λ

d̄4k

(∑
a ca
k2

+

∑
a cam

2
a

p4
+ · · ·

)
.

So, if we take
∑

a ca = −1 we cancel the Λ2 term, and if we take
∑

a cam
2
a = −m2, we

also cancel the ln Λ term. This requires at least two PV electron fields, but so what?

Once we do this, the momentum integral converges, and the Ward identity applies, so

the answer will be of the promised form Πµν = q2Π∆µν
T . After some boiling, the answer

is

Π(q2) =
1

2π2

∫
dxx(1− x) ln

M2

m2 − x(1− x)q2

where lnM2 ≡ −
∑

a ca lnm2
a. This M plays the role of the UV scale of ignorance

thenceforth.

Notice that this is perfectly consistent with our other two one-loop PV calculations:

in those, the extra PV electrons never get a chance to run. At higher loops, we would

have to make sure to be consistent.

Dimensional regularization. A regulator which is more automatically gauge

invariant is dimensional regularization (dim reg). I have already been writing many of

the integrals in D dimensions. One small difference when we are considering this as a

14Two points from lecture: How could we have predicted that the cutoff on euclidean momentum

`2E < Λ2 would break gauge invariance? I haven’t found a more direct argument than its violation

of the Ward identity here; let me know if you find one. Second: it is possible to construct a gauge

invariant regulator with an explicit UV cutoff, using a lattice. The price, however, is that the gauge

field enters only via the link variables U(x, ê) = ei
∫ x+ê
x

A where x is a site in the lattice and ê is the

direction to a neighboring site in the lattice. For more, look up ‘lattice gauge theory’ in Zee’s index.
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regulator for an integral of fixed dimension is that we don’t want to violate dimensional

analysis, so we should really replace∫
d4` −→

∫
d4−ε`

µ̄−ε

where D = 4 − ε and µ̄ is an arbitrary mass scale which will appear in the regulated

answers, which we put here to preserve dim’l analysis – i.e. the couplings in dim

reg will have the same engineering dimensions they had in the unregulated theory

(dimensionless couplings remain dimensionless). µ̄ will parametrize our RG, i.e. play

the role of the RG scale. (It is often called µ at this step and then suddenly replaced

by something also called µ; I will instead call this µ̄ and relate it to the thing that ends

up being called µ.)

[Zinn-Justin 4th ed page 233] Dimensionally regularized integrals can be defined

systematically with a few axioms indicating how the D-dimensional integrals behave

under

1. translations
∫

d̄Dpf(p+ q) =
∫

d̄Dpf(p) 15

2. scaling
∫

d̄Dpf(sp) = |s|−D
∫

d̄Dpf(p)

3. factorization
∫

d̄Dp
∫

d̄Dqf(p)g(q) =
∫

d̄Dpf(p)
∫

d̄Dqg(q)

The (obvious?) third axiom implies the following formula for the sphere volume as a

continuous function of D:(π
a

)D/2
=

∫
dDxe−a~x

2

= ΩD−1

∫ ∞
0

xD−1dxe−ax
2

=
1

2
a−

D
2 Γ

(
D

2

)
ΩD−1 . (6.38)

This defines ΩD−1 for general D.

In dim reg, the one-loop vacuum polarization correction does satisfy the gauge

invaraince Ward identity Πµν = P µνδΠ2. A peek at the tables of dim reg integrals

shows that δΠ2 is:

δΠ2(p2)
Peskin p. 252

= − 8e2

(4π)D/2

∫ 1

0

dxx(1− x)
Γ(2−D/2)

∆2−D/2 µ̄ε

D→4
= − e2

2π2

∫ 1

0

dxx(1− x)

(
2

ε
− log

(
∆

µ2

))
(6.39)

where we have introduced the heralded µ:

µ2 ≡ 4πµ̄2e−γE

15Note that this rule fails for the euclidean momentum cutoff.
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where γE is the Euler-Mascheroni constant; we define µ in this way so that, like Rosen-

crantz and Guildenstern, γE both appears and disappears from the discussion at this

point.

[End of Lecture 28]

In the second line of (6.39), we expanded the Γ-function about D = 4. Notice that

what was a log divergence, becomes a 1
ε

pole in dim reg. There are other singularities

of this function at other integer dimensions. It is an interesting question to ponder why

the integrals have such nice behavior as a function of D. That is: they only have simple

poles. A partial answer is that in order to have worse (e.g. essential) singularities at

some D, the perturbative field theory would have to somehow fail to make sense at

larger D.

Now we are in a position to choose a renormalization condition (also known as

a renormalization scheme), which will specify how much of the finite bit of Π gets

subtracted by the counterterm. One possibility is demand that the photon propagator

is not corrected at q = 0, i.e. demand Zγ = 1. Then the resulting one-loop shift is

δΠ2(q2) = Π2(q2)− Π2(0) =
e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)p2

m2

)
.

We’ll use this choice below.

Another popular choice, about which more later, is called the MS scheme, in which

Π is defined by the rule that we subtract the 1/ε pole. This means that the counterterm

is

δ
(MS)

F 2 = − e2

2π2

2

ε

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

.

(Confession: I don’t know how to state this in terms of a simple renormalization

condition on Π2. Also: the bar in MS refers to the (not so important) distinction

between µ̄ and µ.) The resulting vacuum polarization function is

Π
(MS)
2 (p2) =

e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)p2

µ2

)
.

6.7.2 Physics from vacuum polarization

One class of physical effects of vacuum polarization arise from attaching the corrected

photon propagator to a static charge source. The resulting effective Coulomb potential
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is the fourier transform of

Ṽ (q) =
1

q2

e2

1− Π(q2)
≡ e2

eff(q)

q2
. (6.40)

This has consequences in both IR and UV.

IR: In the IR (q2 � m2), it affects the spectra of atoms. The leading correction is

δΠ̃2(q) =

∫
dxx(1−x) ln

(
1− q2

m2
x(1− x))

)
q�m
'
∫
dxx(1−x)

(
− q2

m2
x(1− x))

)
= − q2

30m2

which means

Ṽ (q)
q�m
' e2

q2
+
e2

q2

(
− q2

30m2

)
+ · · ·

and hence

V (r) = − e2

4πr2
− e4

60π2m2
δ(r) + · · · ≡ V + ∆V.

This shifts the energy levels of hydrogen s-orbitals (the ones with support at the origin)

by ∆Es = 〈s|∆V |s〉 which contributes to lowering the 2S state relative to the 2P state

(the Lamb shift).

This delta function is actually a long-wavelength approximation to what is called the

Uehling potential; its actual range is 1/me, which is the scale on which Π2 depends. The

delta function approximation is a good idea for atomic physics, since 1
me
� a0 = 1

αme
,

the Bohr radius. See Schwartz p. 311 for a bit more on this.

UV: In the UV limit (q2 � m2), we can approximate ln
(

1− q2

m2x(1− x)
)
'

ln
(
− q2

m2x(1− x)
)
' ln

(
− q2

m2

)
to get

Π2(q2) =
e2

2π2

∫ 1

0

dxx(1−x) ln

(
1− q2

m2
x(1− x)

)
' e2

2π2

∫ 1

0

dxx(1−x) ln

(
− q2

m2

)
=

e2

12π2
ln

(
− q2

m2

)
.

Therefore, the effective charge in (6.40) at high momentum exchange is

e2
eff(q2) =

e2

1− e2

12π2 ln
(
− q2

m2

) .
(Remember that q2 < 0 for t-channel exchange, as in the static potential, so the

argument of the log is positive and this is real.)

Two things: if we make q2 big enough, we can make the loop correction as big as

the 1. This requires q ∼ 10286 eV. Good luck with that. This is called a Landau pole.

The second thing is: this perspective of a scale-dependent coupling is very valuable,

and is a crucial ingredient in the renormalization group. I’ll say more about it after we

discuss the Wilsonian perspective in §9.
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7 Consequences of unitarity

Next I would like to fulfill my promise to show that conservation of probability guar-

antees that some things are positive (for example, Z and 1− Z, where Z is the wave-

function renormalization factor). We will show that amplitudes develop an imaginary

part when the virtual particles become real. (Someone should have put an extra factor

of i in the definition to resolve this infelicity.) We will discuss the notion of density

of states in QFT (this should be a positive number!), and in particular the notion

of the density of states contributing to a correlation function G = 〈OO〉, also known

as the spectral density of G (or of the operator O). In high-energy physics this idea

is associated with the names Källen-Lehmann and is part of a program of trying to

use complex analysis to make progress in QFT. These quantities are also ubiquitous

in the theory of condensed matter physics and participate in various sum rules. This

discussion will be a break from perturbation theory; we will say things that are true

with a capital ‘t’.

7.1 Spectral density

[Zee III.8, Appendix 2, Xi Yin’s notes for Harvard Physics 253b] In the following we will

consider a (time-ordered) two-point function of an operator O. We will make hardly

any assumptions about this operator. We will assume it is a scalar under rotations,

and will assume translation invariance in time and space. But we need not assume that

O is ‘elementary’. This is an extremely loaded term, a useful definition for which is: a

field governed by a nearly-quadratic action. Also: try to keep an eye out for where (if

anywhere) we assume Lorentz invariance.

So, let

iD(x) ≡ 〈0| T O(x)O†(0) |0〉 .

Notice that we do not assume that O is hermitian. Use translation invariance to move

the left operator to the origin: O(x) = eiPxO(0)e−iPx. This follows from the statement

that P generates translations 16

∂µO(x) = i[Pµ,O(x)] .

16Note that P here is a D-component vector of operators

Pµ = (H, ~P)µ

which includes the Hamiltonian – we are using relativistic notation – but we haven’t actually required

any assumption about the action of boosts.
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And let’s unpack the time-ordering symbol:

iD(x) = θ(t) 〈0| eiPxO(0)e−iPxO†(0) |0〉+ θ(−t) 〈0| O†(0)eiPxO(0)e−iPx |0〉 . (7.1)

Now we need a resolution of the identity operator on the entire QFT H:

1 =
∑
n

|n〉 〈n| .

This innocent-looking n summation variable is hiding an enormous sum! Let’s also

assume that the groundstate |0〉 is translation invariant:

P |0〉 = 0.

We can label each state |n〉 by its total momentum:

P |n〉 = pn |n〉 .

Let’s examine the first term in (7.1); sticking the 1 in a suitable place:

〈0| eiPxO(0)1e−iPxO†(0) |0〉 =
∑
n

〈0| O(0) |n〉 〈n| e−iPxO†(0) |0〉 =
∑
n

e−ipnx||O0n ||2 ,

with O0n ≡ 〈0| O(0) |n〉 the matrix element of our operator between the vacuum and

the state |n〉. Notice the absolute value: unitarity of our QFT requires this to be

positive and this will have valuable consequences.

Next we work on the time-ordering symbol. I claim that :

θ(x0) = θ(t) = −i

∫
d̄ω

e+iωt

ω − iε
; θ(−t) = +i

∫
d̄ω

e+iωt

ω + iε
.

Just like in our discussion of the Feynman contour, the point of the iε is to push

the pole inside or outside the integration contour. The half-plane in which we must

close the contour depends on the sign of t. There is an important sign related to the

orientation with which we circumnavigate the pole. Here is a check that we got the

signs and factors right:

dθ(t)

dt
= −i∂t

∫
d̄ω

eiωt

ω − iε
=

∫
d̄ωeiωt = δ(t).

Consider now the fourier transform of D(x):

iD(q) =

∫
dDxeiqxiD(x) = i(2π)D−1

∑
n

||O0n ||2
(
δ(D−1)(~q − ~pn)

q0 − p0
n + iε

+
δ(D−1)(~q + ~pn)

q0 + p0
n + iε

)
.
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With this expression in hand, you could imagine measuring the O0ns and using that

to determine D.

Suppose that our operator O is capable of creating a single particle (for example,

suppose, if you must, that O = φ, a perturbative quantum field). Such a state is

labelled only by its spatial momentum:
∣∣∣~k〉. The statement that O can create this

state from the vacuum means〈
~k
∣∣∣O(0)† |0〉 =

Z
1
2√

(2π)D−1 2ω~k

(7.2)

where ω~k is the energy of the particle as a function of ~k. For a Lorentz invariant theory,

we can parametrize this as

ω~k
Lorentz!≡

√
~k2 +m2

in terms of m, the mass of the particle. 17 What is Z? From (7.2) and the axioms of

QM, you can see that it’s the probability that O creates this 1-particle state from the

vacuum. In the free field theory it’s 1, and it’s positive because it’s a probability. 1−Z
measures the extent to which O does anything besides create this 1-particle state.

The identity of the one-particle Hilbert space (relatively tiny!) H1 is

11 =

∫
d̄D−1~k

∣∣∣~k〉〈~k∣∣∣ , 〈
~k|~k′

〉
= δ(D−1)(~k − ~k′).

This is a summand in the whole horrible resolution:

1 = 11 + · · · .
17It’s been a month or two since we spoke explicitly about free fields, so let’s remind ourselves about

the appearance of ω−
1
2 in (7.2), recall the expansion of a free scalar field in creation an annihilation

operators:

φ(x) =

∫
d̄D−1~p√

2ω~p

(
a~pe
−ipx + a†~pe

ipx
)

.

For a free field
∣∣∣~k〉 = a†~k

|0〉, and
〈
~k
∣∣∣φ(0) |0〉 = 1√

(2π)D−12ω~k
. The factor of ω−

1
2 is required by the

ETCRs:

[φ(~x), π(~x′)] = iδD−1(~x− ~x′), [a~k,a
†
~k′

] = δD−1(~k − ~k′) ,

where π = ∂tφ is the canonical field momentum. It is just like in the simple harmonic oscillator, where

q =

√
~

2mω

(
a + a†

)
, p = i

√
~ω
2

(
a− a†

)
.
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I mention this because it lets us define the part of the horrible
∑

n which comes from

1-particle states:

=⇒ iD(q) = ...+ i(2π)D−1

∫
d̄D−1~k

Z

2ωk

(
δD−1(~q − ~k)

q0 − ω~k + iε
− (ωk → −ωk)

)
= ...+ i

Z

2ωq

(
1

q0 − ωq + iε
− 1

q0 + ωq + iε

)
Lorentz

= ...+ i
Z

q2 −m2 + iε

(Here again ... is contributions from states involving something else, e.g. more than

one particle.) The big conclusion here is that even in the interacting theory, even if

O is composite and complicated, if O can create a 1-particle state with mass m with

probability Z, then its 2-point function has a pole at the right mass, and the residue

of that pole is Z. (This result was promised earlier when we mentioned LSZ.)18

[End of Lecture 29]

The imaginary part of D is called the spectral density ρ (beware that different

physicists have different conventions for the factor of i in front of the Green’s function;

the spectral density is not always the imaginary part, but it’s always positive (in unitary

theories)!

Using

Im
1

Q− iε
= πδ(Q), (for Q real). (7.3)

we have

ImD(q) = π (2π)D−1
∑
n

||O0n ||2
(
δD(q − pn) + δD(q + pn)

)
.

More explicitly:

Im i

∫
dDx eiqx 〈0| T O(x)O†(0) |0〉 = π (2π)D−1

∑
n

||O0n ||2

δD(q − pn)+ δD(q + pn)︸ ︷︷ ︸
=0 for q0 > 0 since p0

n > 0

 .

The second term on the RHS vanishes when q0 > 0, since states in H have energy

bigger than the energy of the groundstate. Therefore, the contribution of a 1-particle

state to the spectral density is:

ImD(q) = ...+ πZδ(q2 −m2).

18If we hadn’t assumed Lorentz invariance, this would be replaced by the statement: if the operator

O can create a state with energy ω from the vacuum with probability Z, then its Green’s function

has a pole at that frequency, with residue Z.
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This quantity ImD(q) (the spectral density ofO) is positive because it is the number

of states (with D-momentum in an infinitesimal neighborhood of q), weighted by the

modulus of their overlap with the state engendered by the operator on the groundstate.

Now what about multiparticle states? The associated sum over such states involves

mutliple (spatial) momentum integrals, not fixed by the total momentum e.g. in φ4

theory: the three particles must share the momentum q. In this

case the sum over all 3-particle states is∑
n, 3-particle states with momentum q

∝
∫
d~k1d~k2d~k3δ

D(k1 + k2 + k3 − q)

Now instead of an isolated pole, we have a whole collection of

poles right next to each other. This is a branch cut. In this

example, the branch cut begins at q2 = (3m)2. 3m is the lowest

energy q0 at which we can produce three particles of mass m

(they have to be at rest).

Note that in φ3 theory, we would instead find that the particle can decay into two

particles, and the sum over two particle states would look like∑
n, 2-particle states with momentum q

∝
∫
d~k1d~k2δ

D(k1 + k2 − q)

Now we recall some complex analysis, in the form of the Kramers-Kronig (or dis-

persion) relations:

ReG(z) =
1

π
P
∫ ∞
−∞

dω
ImG(ω)

ω − z
(valid if ImG(ω) is analytic in the UHP of ω and falls off faster than 1/ω). These

equations, which I think we were supposed to learn in E&M but no one seems to, and

which relate the real and imaginary parts of an analytic function by an integral equa-

tion, can be interpreted as the statement that the imaginary part of a complex integral

comes from the singularities of the integrand, and conversely that those singularities

completely determine the function.

An even more dramatic version of these relations (whose imaginary part is the

previous eqn) is

f(z) =
1

π

∫
dw

ρ(w)

w − z
, ρ(w) ≡ Imf(w + iε).
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The imaginary part determines the whole function.

Comments:

• The spectral density ImD(q) determines D(q). When people get excited about

this it is called the “S-matrix program” or something like that.

• The result we’ve shown protects physics from our caprices in choosing field vari-

ables. If someone else uses a different field variable η ≡ Z
1
2φ + αφ3, the result

above with O = η shows that∫
dDxeiqx 〈T η(x)η(0)〉

still has a pole at q2 = m2 and a cut starting at the three-particle threshold,

q2 = (3m)2.

• A sometimes useful fact which we’ve basically already shown:

−ImD(q) = (2π)D
∑
n

||O0n ||2
(
δD(q − pn) + δD(q + pn)

)
=

1

2

∫
dDxeiqx 〈0| [O(x),O†(0)] |0〉 .

We can summarize what we’ve learned in the Lorentz-invariant case as follows: In a

Lorentz invariant theory, the spectral density for a scalar operator φ is a scalar function

of pµ with ∑
s

δD(p− ps)|| 〈0|φ(0) |s〉 ||2 =
θ(p0)

(2π)D−1
ρ(p2) .

The function ρ(s) is called the spectral density for this Green’s function. Claims:

• ρ(s) = N ImD for some number N , when s > 0.

• ρ(s) = 0 for s < 0. There are no states for spacelike momenta.

• ρ(s) ≥ 0 for s > 0. The density of states for timelike momenta is positive or zero.

• With our assumption about one-particle states, ρ(s) has a delta-function singu-

larity at s = m2, with weight Z. More generally we have shown that

D(k2) =

∫
ds ρ(s)

1

k2 − s+ iε
.

This is called the Källen-Lehmann spectral representation of the propagator; it

represents it as a sum of free propagators with different masses, determined by the

spectral density. One consequence (assuming unitarity and Lorentz symmetry) is
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that at large |k2|, the Green’s function must go like 1
k2 (or larger), since ρ(s) ≥ 0

means that there cannot be cancellations between each 1
k2−µ2 contribution. This

means that if the kinetic term for your scalar field has more derivatives, something

must break at short distances (Lorentz is the easiest way out, for example on a

lattice).

Taking into account our assumption about single-particle states, this is

D(k2) =
Z

k2 −m2 + iε
+

∫ ∞
(3m)2

ds ρc(s)
1

k2 − s+ iε

where ρc is just the continuum part. The pole at the particle-mass2 survives

interactions, with our assumption. (The value of the mass need not be the same

as the bare mass!)

• Finally, suppose that the field φ in question is a canonical field, in the sense that

[φ(x, t), ∂tφ(y, t)] = iδ(3)(x− y).

This is a statement both about the normalization of the field, and that its canon-

ical momentum is its time derivative. Then19

1 =

∫ ∞
0

dsρ(s). (7.4)

If we further assume that φ can create a one-particle state with mass m, so that

ρ(s) = Zδ(s−m2)+ρc(s) where ρc(s) ≥ 0 is the contribution from the continuum

of ≥ 2-particle states, then

1 = Z +

∫ ∞
threshold

dsρc(s)

is a sum rule. It shows that Z ∈ [0, 1] and is just the statement that if the

field doesn’t create a single particle, it must do something else. The LHS is the

probability that something happens.

19 Here’s how to see this. For free fields (chapter 2) we have

〈0|[φ(x), φ(y)]|0〉free = ∆+(x− y,m2)−∆+(y − x,m2).

For an interacting canonical field, we have instead a spectral representation:

〈Ω|[φ(x), φ(y)]|Ω〉 =

∫
dµ2ρ(µ2)

(
∆+(x− y, µ2)−∆+(y − x, µ2)

)
,

where ρ is the same spectral density as above. Now take ∂x0 |x0=y0 of the BHS and use ∂t∆+(x −
y;µ2)|x0=y0 = − i

2δ
3(~x− ~y).
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The idea of spectral representation and spectral density is more general than the

Lorentz-invariant case. In particular, the spectral density of a Green’s function is an

important concept in cond-mat. For example, the spectral density for the electron 2-

point function is the thing that actually gets measured in angle-resolved photoemission

experiments (ARPES).

7.2 Cutting rules and optical theorem

[Zee §III.8] So, that may have seemed like some math. What does this mean when we

have in our hands a perturbative QFT? Consider the two point function of a relativistic

scalar field φ which has a perturbative cubic interaction:

S =

∫
dDx

(
1

2

(
(∂φ)2 +m2φ2

)
− g

3!
φ3

)
.

Sum the geometric series of 1PI insertions to get

iDφ(q) =
i

q2 −m2 − Σ(q) + iε

where Σ(q) is the 1PI two point vertex.

The leading contribution to Σ comes from the one loop

diagram at right and is

iΣ1 loop(q2) = (ig)2

∫
d̄Dk

i

k2 −m2 + iε

i

(q − k)2 −m2 + iε
.

Consider this function for real q, for which there are actual

states of the scalar field – timelike qµ, with q0 > m. The

real part of Σ shifts the mass. What does it mean if this function has an imaginary

part?

Claim: ImΣ/m is a decay rate.

It moves the energy of the particle off of the real axis from m to√
m2 + iImΣ(m2)

small ImΣ ∼ g2

' m+ i
ImΣ(m2)

2m
.

The fourier transform to real time is an amplitude for propagation in time of a state

with complex energy E : its wavefunction evolves like ψ(t) ∼ e−iEt and has norm

||ψ(t) ||2 ∼ ||e−i(E−i
1
2

Γ)t ||2 = e−Γt.
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In our case, we have Γ ∼ ImΣ(m2)/m (I’ll be more precise below), and we interpret

that as the rate of decay of the norm of the single-particle state. There is a nonzero

probability that the state turns into something else as a result of time evolution in the

QFT: the single particle must decay into some other state – multiple particles. (We

will see next how to figure out into what it decays.)

The absolute value of the Fourier transform of this quantity ψ(t) is the kind of

thing you would measure in a scattering experiment. This is

F (ω) =

∫
dt e−iωtψ(t) =

∫ ∞
0

dt e−iωtei(M−
1
2
iΓ)t =

1

i (ω −M)− 1
2
Γ

||F (ω) ||2 =
1

(ω −M)2 + 1
4
Γ2

is a Lorentzian in ω with width Γ. So Γ is sometimes called a width.

So: what is ImΣ1 loop in this example?

We will use
1

k2 −m2 + iε
= P 1

k2 −m2
− iπδ(k2 −m2) ≡ P − i∆

where P denotes ‘principal part’. Then

ImΣ1 loop(q) = −g2

∫
dΦ (P1P2 −∆1∆2)

with dΦ =d̄k1d̄k2(2π)DδD(k1 + k2 − q).

This next trick, to get rid of the principal part bit, is from Zee’s book (the second

edition on p.214; he also does the calculation by brute force in the appendix to that

section). We can find a representation for the 1-loop self-energy in terms of real-space

propagators: it’s the fourier transform of the amplitude to create two φ excitations at

the origin at time zero with a single φ field (this is ig), to propagate them both from 0

to x (this is iD(x)2) and then destroy them both with a single φ field (this is ig again).

Altogether:

iΣ(q) =

∫
ddx eiqx (ig)2 iD(x)iD(x)

= g2

∫
dΦ

1

k2
1 −m2

1 + iε

1

k2
2 −m2

2 + iε
(7.5)

In the bottom expression, the iεs are designed to produce the time-ordered D(x)s.

Consider instead the strange combination

0 =

∫
ddx eiqx (ig)2 iDadv(x)iDret(x)
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= g2

∫
dΦ

1

k2
1 −m2

1 − σ1iε

1

k2
2 −m2

2+σ2iε
(7.6)

where σ1,2 ≡ sign(k0
1,2). This expression vanishes because the integrand is identically

zero: there is no value of t for which both the advanced and retarded propagators are

nonzero (one has a θ(t) and the other has a θ(−t), and this is what’s accomplished by

the red σs). Therefore, we can add the imaginary part of zero

−Im(0) = −g2

∫
dΦ (P1P2 + σ1σ2∆1∆2)

to our expression for ImΣ1-loop to cancel the annoying principal part bits:

ImΣ1-loop = g2

∫
dΦ ((1 + σ1σ2) ∆1∆2) .

The quantity (1 + σ1σ2) is only nonzero when k0
1 and k0

2 have the same sign; but in dΦ

is a delta function which sets q0 = k0
1 + k0

2. WLOG we can take q0 > 0 since we only

care about the propagation of positive-energy states. Therefore both k0
1 and k0

2 must

be positive.

The result is that the only values of k on the RHS that contribute are ones with

positive energy, which satisfy all the momentum conservation constraints:

ImΣ = g2

∫
dΦθ(k0

1)θ(k0
2)∆1∆2

=
g2

2

∫
d̄D−1~k1

2ω~k1

d̄D−1~k2

2ω~k2

(2π)DδD(k1 + k2 − q) .

But this is exactly the density of actual final states into which the thing can decay! In

summary:

ImΣ =
∑

actual states n of 2 particles

into which φ can decay

||Aφ→n ||2 (7.7)

In this example the decay amplitude A is just ig.

This result is generalized by the Cutkosky cutting rules

for finding the imaginary part of a feynman diagram de-

scribing a physical process. The rough rules are the fol-

lowing. Assume the diagram is amputated – leave out the

external propagators. Then any line drawn through the di-

agram which separates initial and final states (as at right)
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will ‘cut’ through some number of internal propagators; re-

place each of the cut propagators by θ(p0)πδ(p2 −m2) = θ(p0)πδ(p0−εp)

2εp
. As Tony Zee

says: the amplitude becomes imaginary when the intermediate particles become real

(as opposed to virtual), aka ‘go on-shell’. This is a place where the iεs are crucial.

[End of Lecture 30]

The general form of (7.7) is a general consequence of unitarity. Recall that the

S-matrix is

Sfi = 〈f | e−iHT |i〉 ≡ (1 + iT )fi .

H = H† =⇒ 1 = SS† =⇒ 2ImT ≡ i
(
T † − T

) 1=SS†
= T †T .

This is called the optical theorem and it is the same as the one taught in some QM

classes. In terms of matrix elements:

2ImTfi =
∑
n

T †fnTni

Here we’ve inserted a resolution of the identity (again on the QFT Hilbert space, the

same scary sum) in between the two T operators. In the one-loop approximation, in

the φ3 theory here, the intermediate states which can contribute to
∑

n are two-particle

states, so that
∑

n →
∫

d̄~k1 d̄~k2, the two-particle density of states.

A bit more explicitly, introducing a basis of scattering states

〈f | T |i〉 = Tfi = /δ
4
(pf − pi)Mfi, T †fi = /δ

4
(pf − pi)M?

if , (recall that /δ
d ≡ (2π)dδd)

we have

〈F | T †1T |I〉 =
∑
n

〈F | T †
∑
n

n∏
f=1

∫
d̄3qf
2Ef
|{qf}〉 〈{qf}| T |I〉

=
∑
n

n∏
f=1

∫
d̄3qf
2Ef

/δ
4
(pF −

∑
f

qf )M?
{qf}F

/δ
4
(pI −

∑
f

qf )M{qf}I

Now notice that we have a /δ
4
(pF − pI) on both sides, and∫
d̄3qf
2Ef

/δ
4
(pF −

∑
f

qf ) =

∫
dΠn

is the final-state phase space of the n particles. Therefore, the optical theorem says

i (M?
IF −MFI) =

∑
n

∫
dΠnM?

{qf}FM{qf}I .
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Now consider forward scattering, I = F (notice that here it is crucial that M is the

transition matrix, S = 1 + iT = 1 + i/δ(pT )M):

2ImMII =
∑
n

∫
dΠn|M{qf}I |

2.

Recall that for real x the imaginary part of a function of one variable with a branch

cut, (like Im(x + iε)ν = 1
2

((x+ iε)ν − (x− iε)ν)) is equal to (half) the discontinuity

of the function ((x)ν) across the branch cut. In more complicated example (such as a

box diagram contributing to 2-2 scattering), there can be more than one way to cut

the diagram. Different ways of cutting the diagram correspond to discontinuities in

different kinematical variables. To get the whole imaginary part, we have to add these

up. A physical cut is a way of separating all initial-state particles from all final-state

particles by cutting only internal lines. So for example, a t-channel tree-level diagram

(like ) never has any imaginary part; this makes sense because the momentum

of the exchanged particle is spacelike.

Resonances. A place where this technology is useful is when we want to study

short-lived particles. In our formula for transition rates and cross sections we as-

sumed plane waves for our external states. Some particles don’t live long enough for

separately producing them: and then watching them decay: ;

instead we must find them as resonances in scattering amplitudes of other particles:

Im

( )
.

So, consider the case iM = 〈F | iT |I〉 where both I and F are one-particle states.

A special case of the LSZ formula says

M = −
(√

Z
)2

Σ = −ZΣ (7.8)

where −iΣ is the amputated 1-1 amplitude, that is the self-energy, sum of all connected

and amputated diagrams with one particle in and one particle out. Let Σ(p) = A(p2)+

iB(p2) (not standard notation), so that near the pole in question, the propagator looks

like

G̃(2)(p) =
i

p2 −m2
0 − Σ(p)

' i

(p2 −m2) (1− ∂p2A|m2)︸ ︷︷ ︸
=Z−1

−iB
=

iZ

(p2 −m2)− iBZ
.

In terms of the particle width Γw ≡ −ZB/m, this is

G̃(2)(p) =
iZ

(p2 −m2)− imΓw
.
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So, if we can make the particle whose propagator we’re dis-

cussing in the s-channel, the cross-section will be propor-

tional to∣∣∣G̃(2)(p)
∣∣∣2 =

∣∣∣∣ 1

(p2 −m2)− imΓw

∣∣∣∣2 =
1

(p2 −m2)2 +m2Γ2
w

a Lorentzian or Breit-Wigner distribution: In the COM

frame, p2 = 4E2, and the cross section σ(E) has a reso-

nance peak at 2E = m, with width Γw. It is the width

in the sense that the function is half its maximum when

E = E± =
√

m(m±Γw)
4

' m
2
± Γ

4
.

This width is the same as the decay rate, because of the optical theorem:

Γw = −BZ
m

(7.8)
= − 1

m
(−ImM1→1)

optical
=

1

m

1

2

∑
n

∫
f

dΠn|M{qf}1|
2 = Γ

the last equation of which is exactly our formula for the decay rate. If it is not the

case that Γ� m, i.e. if the resonance is too broad, the Taylor expansion of the inverse

propagator we did may not be such a good idea.

Unitarity and high-energy physics. Two comments: (1) there had better not

be any cutoff dependence in the imaginary part. If there is, we’ll have trouble cancelling

it by adding counterterms – an imaginary part of the action will destroy unitarity. This

is elaborated a bit in Zee’s discussion.

(2) Being bounded by 1, probabilities can’t get too big. Cross sections are also

bounded: there exist precise bounds from unitarity on the growth of cross sections

with energy, such as the Froissart bound, σtotal(s) ≤ C ln2 s for a constant C. Xi Yin’s

notes describe a proof.

On the other hand, consider an interaction whose coupling G has mass dimension

k. The cross section to which G contributes has dimensions of area, and comes from

squaring an amplitude proportional to G, so comes with at least two powers of G. At

E � anything else, these dimensions must be made up with powers of E:

σ(E � ...) ∼ G2E−2−2k. (7.9)

This means that if k ≤ −1, the cross section grows at high energy. In such a case,

something else must happen to ‘restore unitarity’. One example is Fermi’s theory of

Weak interactions, which involves a 4-fermion coupling GF ∼ M−2
W . Here we know

what happens, namely the electroweak theory, about which more soon. In gravity,

GN ∼M−2
Pl , we can’t say yet.

66



7.3 How to study hadrons with perturbative QCD

[Peskin §18.4] Here is a powerful physics application of both the optical theorem and the

spectral representation. Consider the total inclusive cross section for e+e− scattering

at energies s = (k + k+)2 � m2
e:

σe
+e−

T

optical thm
=

1

2s
ImM(e+e− ← e+e−) (7.10)

where on the RHS,M is the forward scattering amplitude (meaning that the initial and

final electrons have the same momenta). We’ve learned a bit about the contributions

of electrons and muons to the BHS of this expression, what about QCD? To leading

order in α (small), but to all orders in the strong coupling αs (big at low energies), the

contributions of QCD look like

iMh = = (−ie)2ū(k)γµv(k+)
−i

s
iΠµν

h (q)
−i

s
v̄(k+)γνu(k)

with

= iΠµν
h (q)

Ward
= i(q2ηµν − qµqν)Πh(q

2)

the hadronic contribution to the vacuum polarization. We can pick out the contribution

of the strong interactions by just keeping these bits on the BHS of (7.10):

σhadrons←e+e− =
1

4

∑
spins

ImMh

2s
= −4πα

s
ImΠh(s).

(The initial and final spins are equal and we average over initial spins. We can ignore the

longitudinal term qµqν by the Ward identity. The spinor trace is
∑

spins ū(k)γµv(k+)v̄(k+)γµu(k) =

−2k · k+ = −s.) As a reality check, consider the contribution from one loop of a heavy

lepton of mass M2 � m2
e:

ImΠL(s+ iε) = −α
3
F (M2/s)

and

σL
+L−←e+e− =

4π

3

α2

s
F (M2/s)

with F (M2/s) =
√

1− 4M2

s

(
1 + 2M2

s

)
= 1 + O (M2/s). In perturbative QCD, the

leading order result is the same from each quark with small enough mass:

σquarks←e+e−
0 = 3︸︷︷︸

colors

∑
flavors, f

Q2
f

4π

3

α2

s
F (M2/s).
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But Q: why is a perturbative analysis of QCD relevant here? You might think

asymptotic freedom means QCD perturbation theory is good at high energy or short

distances, and that seems to be borne out by noticing that Πh is a two-point function

of the quark contributions to the EM current:

iΠµν
h (q) = −e2

∫
d4x e−iq·x 〈Ω| T Jµ(x)Jν(0) |Ω〉 , Jµ(x) ≡

∑
f

Qf q̄f (x)γµqf (x).

It looks like we are taking x→ 0 and studying short distances. But if we are interested

in large timelike qµ here, that means that dominant contributions to the x integral

are when the two points are timelike separated, and in the resolution of the identity in

between the two Js includes physical states of QCD with lots of real hadrons. The limit

where we can do (later we will learn how) perturbative QCD is when q2 = −Q2
0 > 0 is

spacelike. (Preview: We can use the operator product expansion of the two currents.)

How can we use this knowledge to find the answer in the physical regime of q2 > 0?

The fact that Πh is a two-point function means that it has a spectral representation.

It is analytic in the complex q2 plane except for a branch cut on the positive real axis

coming from production of real intermediate states, exactly where we want to know the

answer. One way to encode the information we know is to package it into moments:

In ≡ −4πα

∮
CQ0

dq2

2πi

Πh(q
2)

(q2 +Q2
0)n+1

= −4πα

n!
(∂q2)n Πh|q2=−Q2

0
.

On the other hand, we know from the (appropriate generalization to currents of the)

spectral representation sum rule (7.4) that Πh(q
2)
|q|�...
<∼ log(q2), so for n ≥ 1, the

contour at infinity can be ignored.

Therefore

In = −4πα

∮
Pacman

dq2

2πi

Πh(q
2)

(q2 +Q2
0)n+1

= −4πα

∫
dq2

4πi

DiscΠh

(q2 +Q2
0)n+1

=
1

π

∫ ∞
sthreshhold

ds
s

(s+Q2
0)n+1

σhadrons←e+e−(s).

On the RHS is (moments of) the measurable (indeed, measured) cross-section, and on

the LHS is things we can calculate (later). If the convergence of these integrals was

uniform in n, we could invert this relation and directly try to predict the cross sec-

tion to hadrons. But it is not, and the correct cross section varies about the leading

QCD answer more and more at lower energies, culminating at various Breit-Wigner

resonance peaks at q̄q boundstates. [End of Lecture 31]
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8 A parable on integrating out degrees of freedom

Here’s a second parable from QM which gives some useful perspective on renormal-

ization in QFT. It is also a valuable opportunity to understand the differences and

connections between euclidean and real-time Green’s functions. And it will give me a

chance to remind you that you already know all about path integrals in field theory.

[Banks p. 138] Consider a system of two coupled harmonic oscillators. We will as-

sume one of the springs is much stiffer than the other: let’s call their natural frequencies

ω0,Ω, with ω0 � Ω. The euclidean-time action is

S[Q, q] =

∫
dt

[
1

2

(
q̇2 + ω2

0q
2
)

+
1

2

(
Q̇2 + Ω2Q2

)
+ gQq2

]
≡ Sω0 [q]+SΩ[Q]+Sint[Q, q].

(The particular form of the q2Q coupling is chosen for convenience. Don’t take too

seriously the physics at negative Q.) We can construct physical observables in this

model by studying the path integral:

Z =

∫
[dQdq]e−S[Q,q].

Since I put a minus sign rather than an i in the exponent (and the potential terms in

the action have + signs), this is a euclidean path integral.

Let’s consider what happens if we do the path integral over the heavy mode Q, and

postpone doing the path integral over q. This step, naturally, is called integrating out

Q, and we will see below why this is a good idea. The result just depends on q; we can

think of it as an effective action for q:

e−Seff[q] :=

∫
[dQ]e−S[q,Q]

= e−Sω0 [q]
〈
e−Sint[Q,q]

〉
Q

Here 〈...〉Q indicates the expectation value of ... in the (free) theory of Q, with the

action SΩ[Q]. It is a gaussian integral:〈
e−Sint[Q,q]

〉
Q

=

∫
[dQ]e−SΩ[Q]−

∫
dsJ(s)Q(s) = N e

1
4

∫
dsdtJ(s)G(s,t)J(t) .

This last equality is an application of the ‘fundamental theorem of path integrals,’

i.e. the gaussian integral. Here J(s) ≡ gq(s)2. The normalization factor N is indepen-

dent of J and hence of q. And G(s, t) is the inverse of the linear operator appearing in

SΩ, the Green’s function:

SΩ[Q] =

∫
dsdtQ(s)G−1(s, t)Q(t).
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More usefully, G satisfies (
−∂2

s + Ω2
)
G(s, t) = δ(s− t)

The fact that our system is time-translation invariant means G(s, t) = G(s − t). We

can solve this equation in fourier space: G(s) =
∫

d̄ωe−iωsGω makes it algebraic:

Gω =
1

ω2 + Ω2

and we have

G(s) =

∫
d̄ωe−iωs

1

ω2 + Ω2
. (8.1)

So we have:

e−Seff[q] = e−Sω0 [q]e−
∫
dtds g

2

2
q(s)2G(s,t)q(t)2

or taking logs

Seff[q] = Sω0 [q] +

∫
dtds

g2

2
q(s)2G(s, t)q(t)2 . (8.2)

Q mediates an interaction of four qs, an anharmonic term, a

self-interaction of q. In Feynman diagrams, the leading inter-

action between q’s mediated by Q comes from the diagram

at left.
And the whole thing comes from exponentiating disconnected copies of this diagram.

There are no other diagrams: once we make a Q from two qs what can it do besides

turn back into two qs? Nothing. And no internal q lines are allowed, they are just

sources, for the purposes of the Q integral.

But it is non-local: we have two integrals over the time in the new quartic term.

This is unfamiliar, and bad: e.g. classically we don’t know how to pose an initial value

problem using this action.

But now suppose we are interested in times much longer than 1/Ω, say times com-

parable to the period of oscillation of the less-stiff spring 2π/ω. We can accomplish

this by Taylor expanding under the integrand in (8.1):

G(s)
s�1/Ω
'

∫
d̄ωe−iωs

1

Ω2

1

1 + ω2

Ω2︸ ︷︷ ︸
=
∑
n(−1)n

(
ω2

Ω2

)n
' 1

Ω2
δ(s) +

1

Ω4
∂2
sδ(s) + ...

Plug this back into (8.2):

Seff[q] = Sω0 [q] +

∫
dt

g2

2Ω2
q(t)4 +

∫
dt

g2

2Ω4
q̇2q2 + ...
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The effects of the heavy mode Q are now organized in a derivative expansion, with

terms involving more derivatives suppressed by more powers of the high energy scale

Ω.

+ · · · (8.3)

A useful mnemonic for integrating out the effects of the heavy field in terms of Feynman

diagrams: to picture Q as propagating for only a short time (compared to the external

time t−s), we can contract its propagator to a point. The first term on the RHS shifts

the q4 term, the second shifts the kinetic term, the third involves four factors of q̇...

On the RHS of this equation, we have various interactions involving four qs, which

involve increasingly many derivatives. The first term is a quartic potential term for

q: ∆V = g
Ω2 q

4; the leading effect of the fluctuations of Q is to shift the quartic self-

coupling of q by a finite amount (note that we could have included a bare λ0q
4 potential

term).

Notice that if we keep going in this expansion, we get terms with more than two

derivatives of q. This is OK. We’ve just derived the right way to think about such

terms: they are part of a never-ending series of terms which become less and less

important for low-energy questions. If we want to ask questions about x at energies

of order ω, we can get answers that are correct up to effects of order
(
ω
Ω

)2n
by keeping

the nth term in this expansion.

Conversely if we are doing an experiment with precision ∆ at energy ω, we can

measure the effects of up to the nth term, with(ω
Ω

)2n

∼ ∆.

Another important lesson: Seff[q] contains couplings with negative dimensions of

energy ∑
n

cn (∂nt q)
2 q2, with cn ∼

1

Ω2n
,

exactly the situation where the S-matrix grows too fast at high energies that we dis-

cussed at (7.9). In this case we know exactly where the probability is going: if we have

enough energy to see the problem E ∼ Ω, we have enough energy to kick the heavy

mode Q out of its groundstate.
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8.0.1 Attempt to consolidate understanding

We’ve just done some coarse graining: focusing on the dofs we care about (q), and

actively ignoring the dofs we don’t care about (Q), except to the extent that they

affect those we do (e.g. the self-interactions of q).

Above, we did a calculation in a QM model with two SHOs. This is a paradigm

of QFT in many ways. For one thing, free quantum fields are bunches of harmonic

oscillators with natural frequency depending on k, Ω =
√
~k2 +m2. Here we kept just

two of these modes (one with large k, one with small k) for clarity. Perhaps more

importantly, QM is just QFT in 0+1d. The more general QFT path integral just

involves more integration variables.

The result of that calculation was that fluctuations of Q mediate various q4 inter-

actions. It adds to the action for q the following: ∆Seff[q] ∼
∫
dtdsq2(t)G(t− s)q2(s),

as in Fig. 8.3.

If we have the hubris to care about the exact answer, it’s nonlocal in time. But

if we want exact answers then we’ll have to do the integral over q, too. On the other

hand, the hierarchy of scales ω0 � Ω is useful if we ask questions about energies of

order ω0, e.g.

〈q(t)q(0)〉 with t ∼ 1

ω0

� Ω

Then we can taylor expand the function G(t − s), and we find a series of corrections

in powers of 1
tΩ

(or more accurately, powers of ∂t
Ω

).

(Notice that it’s not so useful to integrate out light degrees of freedom to get an

action for the heavy degrees of freedom; that would necessarily be nonlocal and stay

nonlocal and we wouldn’t be able to treat it using ordinary techniques.)

The crucial point is that the scary non-locality of the effective action that we saw

only extends a distance of order 1
Ω

; the kernel G(s − t) looks like this:

One more attempt to drive home the

central message of this discussion: the

mechanism we’ve just discussed is an es-

sential ingredient in getting any physics

done at all. Why can we do physics de-

spite the fact that we do not understand

the theory of quantum gravity which gov-

erns Planckian distances? We happily do

lots of physics without worrying about
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this! This is because the effect of those Planckian quantum gravity fluctuations –

whatever they are, call them Q – on the degrees of freedom we do care about (e.g.

the Standard Model, or an atom, or the sandwich you made this morning, call them

collectively q) are encoded in terms in the effective action of q which are suppressed by

powers of the high energy scale MPlanck, whose role in the toy model is played by Ω.

And the natural energy scale of your sandwich is much less than MPlanck.

I picked the Planck scale as the scale to ignore here for rhetorical drama, and

because we really are ignorant of what physics goes on there. But this idea is equally

relevant for e.g. being able to describe water waves by hydrodynamics (a classical

field theory) without worrying about atomic physics, or to understand the physics of

atoms without needing to understand nuclear physics, or to understand the nuclear

interactions without knowing about the Higgs boson, and so on deeper into the onion

of physics.

This wonderful situation, which makes physics possible, has a price: since physics

at low energies is so insensitive to high energy physics, it makes it hard to learn about

high energy physics! People have been very clever and have learned a lot in spite of this

vexing property of the RG. We can hope that will continue. (Cosmological inflation

plays a similar role in hiding the physics of the early universe. It’s like whoever designed

this game is trying to hide this stuff from us.)

The explicit functional form of G(s) (the inverse of the (euclidean) kinetic operator

for Q) is:

G(s) =

∫
d̄ω

e−iωs

ω2 + Ω2
= e−Ω|s| 1

2Ω
. (8.4)

Do it by residues: the integrand has poles at ω = ±iΩ (see the figure 1 below). The

absolute value of |s| is crucial, and comes from the fact that the contour at infinity

converges in the upper (lower) half plane for s < 0 (s > 0).

Next, some comments about ingredients in this discussion, which provide a useful

opportunity to review/introduce some important QFT technology:

• Please don’t be confused by the formal similarity of the above manipulations with

the construction of the generating functional of correlation functions of Q:

Z[J ] ≡
〈
e
∫
dtQ(t)J(t)

〉
Q
, 〈Q(t1)Q(t2)...〉Q =

δ

δJ(t1)

δ

δJ(t1)
... logZ[J ]
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20 It’s true that what we did above amounts precisely to constructing Z[J ], and

plugging in J = g0q
2. But the motivation is different: in the above q is also a

dynamical variable, so we don’t get to pick q and differentiate with respect to it;

we are merely postponing doing the path integral over q until later.

• Having said that, what is this quantity G(s) above? It is the (euclidean) two-

point function of Q:

G(s, t) = 〈Q(s)Q(t)〉Q =
δ

δJ(t)

δ

δJ(s)
logZ[J ].

The middle expression makes it clearer that G(s, t) = G(s − t) since nobody

has chosen the origin of the time axis in this problem. This euclidean Green’s

function, the inverse of −∂2
τ + Ω2, is unique, once we demand that it falls off at

large separation. The same is not true of the real-time Green’s function, which

we discuss next in §8.0.2.

• Adding more labels. Quantum mechanics is quantum field theory in 0+1

dimensions. Except for our ability to do all the integrals, everything we are

doing here generalizes to quantum field theory in more dimensions: quantum

field theory is quantum mechanics (with infinitely many degrees of freedom).

With more spatial dimensions, we’ll want to use the variable x for the spatial

coordinates (which are just labels on the fields!) and it was in anticipation of

this step that I used q instead of x for my oscillator position variables.

All the complications we’ll encounter next (in §8.0.2) with choosing frequency

contours are identical in QFT.

8.0.2 Wick rotation to real time.

For convenience, I have described this calculation in euclidean time (every t or s or

τ that has appeared so far in this subsection has been a euclidean time). This is

nice because the euclidean action is nice and positive, and all the wiggly and ugly

configurations are manifestly highly suppressed in the path integral. Also, in real

time21 we have to make statements about states: i.e. in what state should we put the

heavy mode?

20 Functional derivatives are very useful! A reminder: the definition is

δJ(s)

δJ(t)
= δ(s− t) (8.5)

plus the Liebniz properties (linearity, product rule).
21aka Minkowski time aka Lorentzian time
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The answer is: in the groundstate – it costs more energy than we have to excite it.

I claim that the real-time calculation which keeps the heavy mode in its groundstate

is the analytic continuation of the one we did above, where we replace

ωMink = e−i(π/2−ε)ωabove (8.6)

where ε is (a familiar) infinitesimal. In the picture of the euclidean frequency plane in

Fig. 1, this is a rotation by nearly 90 degrees. We don’t want to go all the way to 90

degrees, because then we would hit the poles at ±iΩ.

The replacement (8.6) just means that if we integrate over real ωMink, we rotate the

contour in the integral over ω as follows:

Figure 1: Poles of the integrand of the ω integral in (8.4).

as a result we pick up the same poles at ωabove = ±iΩ as in the euclidean calculation.

Notice that we had better also rotate the argument of the function, s, at the same time

to maintain convergence, that is:

ωeucl = −iωMink, ωeuclteucl = ωMinktMink, teucl = +itMink. (8.7)
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Figure 2: The Feynman contour in the ωMink complex plane.

So this is giving us a contour prescription for the real-frequency integral. The result

is the Feynman propagator, which we’ve been using all along: depending on the sign

of the (real) time separation of the two operators (recall that t is the difference), we

close the contour around one pole or the other, giving the time-ordered propagator. (It

is the same as shifting the heavy frequency by Ω → Ω − iε, as indicated in the right

part of Fig. 2.)

Notice for future reference that the euclidean action and real-time action are related

by

Seucl[Q] =

∫
dteucl

1

2

((
∂Q

∂teucl

)2

+ Ω2Q2

)
= −iSMink[Q] = −i

∫
dtMink

1

2

((
∂Q

∂tMink

)2

− Ω2Q2

)
.

because of (8.7). This means the path integrand is e−Seucl = eiSMink .

Why does the contour coming from the euclidean path integral put the excited

mode into its groundstate? That’s the the point in life of the euclidean path integral,

to prepare the groundstate from an arbitrary state:∫
Q0

[dQ]e−S[Q] = 〈Q0| e−HT |...〉 = ψgs(Q0) (8.8)

– the euclidean-time propagator e−HT beats down the amplitude of any excited state

relative to the groundstate, for large enough T .

Let me back up one more step and explain (8.8) more. You know a path integral

representation for the real-time propagator

〈f | e−iHt |i〉 =

∫
f←i

[dq]ei
∫ t
0 dtL.
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On the RHS here, we sum over all paths between i and f in time t (i.e. q(0) = qi, q(t) =

qf ), weighted by a phase ei
∫
dtL.

But that means you also know a representation for∑
f

〈f | e−βH |f〉 ≡ tre−βH

– namely, you sum over all periodic paths qi = qf in imaginary time t = −iβ. So:

Z(β) = tre−βH =

∮
[dq]e−

∫ β
0 dτL =

∮
[dq]e−Seucl[q]

The LHS is the partition function in quantum statistical mechanics. The RHS is the

euclidean functional integral we’ve been using. [For more on this, see Zee §V.2]

The period of imaginary time, β ≡ 1/T , is the inverse temperature. More accu-

rately, we’ve been studying the limit as β → ∞. Taking β → ∞ means T → 0, and

you’ll agree that at T = 0 we project onto the groundstate (if there’s more than one

groundstate we have to think more).

Time-ordering. To summarize the previous discussion: in real time, we must

choose a state, and this means that there are many Green’s functions, not just one:

〈ψ|Q(t)Q(s) |ψ〉 depends on |ψ〉, unsurprisingly.

But we found a special one which arises by analytic continuation from the euclidean

Green’s function, which is unique22. It is

G(s, t) = 〈T (Q(s)Q(t))〉Q ,

the time-ordered, or Feynman, Green’s function, and I write the time-ordering symbol

T to emphasize this. I emphasize that from our starting point above, the time ordering

arose because we have to close the contour in the UHP (LHP) for t < 0 (t > 0).

Let’s pursue this one more step. The same argument tells us that the generating

functional for real-time correlation functions of Q is

Z[J ] =
〈
T ei

∫
JQ
〉

= 〈0| T ei
∫
JQ |0〉 .

22 Another important perspective on the uniqueness of the euclidean Green’s function and the non-

uniqueness in real time: in euclidean time, we are inverting an operator of the form −∂2
τ +Ω2 which is

positive (≡ all its eigenvalues are positive) – recall that −∂2
τ = p̂2 is the square of a hermitian operator.

If all the eigenvalues are positive, the operator has no kernel, so it is completely and unambiguously

invertible. This is why there are no poles on the axis of the (euclidean) ω integral in (8.4). In real

time, in contrast, we are inverting something like +∂2
t + Ω2 which annihilates modes with ∂t = iΩ (if

we were doing QFT in d > 0+1 this equation would be the familiar p2−m2 = 0) – on-shell states. So

the operator we are trying to invert has a kernel and this is the source of the ambiguity. In frequency

space, this is reflected in the presence of poles of the integrand on the contour of integration; the

choice of how to negotiate them encodes the choice of Green’s function.
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In the last step I just emphasized that the real time expectation value here is really

a vacuum expectation value. This quantity has the picturesque interpretation as the

vacuum persistence amplitude, in the presence of the source J .

Causality. In other treatments of this subject (such as ours of last quarter), you

will see the Feynman contour motivated by ideas about causality. This was not the

logic of our discussion but it is reassuring that we end up in the same place. Note that

even in 0+1 dimensions there is a useful notion of causality: effects should come after

their causes. I will have more to say about this later, when we have reason to discuss

other real-time Green’s functions. [End of Lecture 32]

9 The Wilsonian perspective on renormalization

[Fradkin, 2d edition, chapter 4; Cardy; Zee §VI; Álvarez-Gaumé and Vázquez-Mozo, An

Invitation to QFT, chapter 8.4-5 (' §7.3-4 of hep-th/0510040)] The following discussion

describes a perspective which can be applied to any system of (many) extensive de-

grees of freedom. This includes many statistical-mechanics systems, condensed-matter

systems and also QFTs in high energy physics. The great insight of Kadanoff and

Wilson about such systems is that we should organize our thinking about them by

length scale. We should think about a family of descriptions, labelled by the resolution

of our microscope. Before explaining this perspective in detail, let’s spend some time

addressing the following basic and instructive question:

9.1 Where do field theories come from?

9.1.1 A model with finitely many degrees of freedom per unit volume

Figure 3: A configuration of classical Ising

spins on the 2d square lattice. [from Álvarez-Gaumé

and Vázquez-Mozo, hep-th/0510040]

Consider the following system of exten-

sive degrees of freedom – it is an example

of a very well-regulated (euclidean) QFT.

At each site i of a square lattice we place

a two-valued (classical) degree of freedom

si = ±1, so that the path ‘integral’ mea-

sure is∫
[ds]... ≡

∑
{si}

... =
∏

sites, i

∑
si=±1

... .
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Let’s choose the euclidean action to be

S[s] = −βJ
∑
〈i,j〉

sisj .

Here βJ is some coupling; the notation 〈i, j〉 means ‘sites i and j which are nearest

neighbors’. The partition function is

Z =

∫
[ds]e−S[s] =

∑
{si}

e+βJ
∑
〈i,j〉 sisj . (9.1)

(I can’t hide the fact that this is the thermal partition function Z = tre−βH for the

classical Ising model on the square lattice, with H = −J
∑
〈i,j〉 sisj, and β ≡ 1/T is the

coolness23, i.e. the inverse temperature.)

In the thermodynamic limit (the number of sites goes to infinity), this model has a

special value of βJ > 0 above which there is spontaneous breaking of the Z2 symmetry

si → −si by a nonzero magnetization, 〈si〉 6= 0.

Kramers-Wannier duality. To see that there is a special value of βJ , we can

make the following observation, due to Kramers and Wannier, and generalized by

Wegner, which is now a subject of obsession for many theoretical physicists. It is

called duality. Consider a configuration of the spins. The action S[s] is determined by

the number of links across which the spins disagree (positive βJ favors contributions

from spins which agree). It is possible to rewrite the partition sum in terms of these

disagreements. (For more on this, see the lecture notes here.) The answer is identical

to the original model, except with βJ replaced by a(βJ)−1 for some number a! At high

temperature the model is obviously disordered, at low temperature the dual model is

obviously disordered, but that means that the original model is ordered. In between

something happens. If only one something happens, it must happen at the special

value βJ = a(βJ)−1.

For a more complete discussion of this subject of duality I recommend this review

by Kogut, §4. We might have the opportunity to come back to it later in this course.

Onsager solution. Lars Onsager solved the model above exactly (published in

1944) and showed for sure that it has a critical point (βJ)? = 1
2

tanh−1
(

1√
2

)
. For our

present purposes this landmark result is a distraction.

Comment on analyticity in βJ versus the critical point. [Zee §V.3] The Ising

model defined by (9.1) is a model of a magnet (more specifically, when βJ > 0 which

23This nomenclature, due to the condensed matter physicist Miles Stoudenmire, does a great job of

reminding us that at lower temperatures, quantum mechanics has more dramatic consequences.
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makes neighboring spins want to align, a ferromagnet). Some basic phenomenology:

just below the Curie temperature Tc, the magnetization (average magnetic moment per

unit volume) behaves like

|M | ∼ (Tc − T )β

where β is a pure number (it depends on the number of spatial dimensions)24. In terms

of the Ising model, the magnetization is25

〈M〉 =
1

Z

∑
{si}

e−H(s)/T

∑
i si
V

. (9.2)

(V is the number of sites of the lattice, the volume of space.) How can you get such

a non-analytic (at T = Tc 6= 0) function of T by adding a bunch of terms of the form

e−E/T ? It is clearly impossible if there is only a finite number of terms in the sum,

each of which is analytic near Tc 6= 0. It is actually possible if the number of terms

is infinite – finite-temperature phase transitions only happen in the thermodynamic

limit.

9.1.2 Landau and Ginzburg guess the answer.

Starting from Z, even with clever tricks like Kramers-Wannier duality, and even for

Onsager, it is pretty hard to figure out what the answer is for the magnetization. But

the answer is actually largely determined on general grounds, as follows.

Let’s ask what is the free energy G at fixed magnetization, G[M ]. How would we

do this in an experiment? We’d apply a uniform magnetic field, and find just the

right field to get the desired M , and then measure the free energy (with our trusty

free-energy-ometer, of course). In more formal terms, we should add a source for the

magnetization and compute

e−βF [J ] = tre−β(H+
∑
MJ).

Pick some magnetization Mc, and choose J [Mc] so that

〈M〉 = −∂F
∂J

= Mc.

Then G[Mc] ≡ F [J [Mc]] −
∑
McJ

[Mc]. This is a Legendre transform of the usual F in

Z = e−βF . In this context, the source J is (minus) an external magnetic (Zeeman)

field. This G[M ] is just the same idea as an object we’ll introduce below called the

24The name is conventional; don’t confuse it with the inverse temperature.
25In many real magnets, the magnetization can point in any direction in three-space – it’s a vector

~M . We are simplifying our lives.

80



euclidean effective action Γ[φc] (up to factors of β), where the analog of M , is called

the ‘classical field’ φc. G is the thing we should minimize to find the magnetization in

the groundstate.

LG Effective Potential. We can even consider a model where the magnetization

is a vector. If ~M is independent of position ~x 26 then rotation invariance (or even just

M → −M symmetry) demands that

G = V

(
a ~M2 + b

(
~M2
)2

+ ...

)
where a, b27 are some functions of T that we don’t know, and the dots are terms with

more Ms. These functions a(T ) and b(T ) have no reason not to be smooth functions

of T . Now suppose there is a value of T for which a(T ) vanishes:

a(T ) = a1(T − Tc) + ...

with a1 > 0 a pure constant. For T > Tc, the minimum of G is at ~M = 0; for T < Tc,

the unmagnetized state becomes unstable and new minima emerge at | ~M | =
√
− a

2b
∼

(Tc−T )
1
2 . This is the mean field theory description of a second-order phase transition.

It’s not the right value of β (it’s about 1/3) for the 3d Curie point, but it shows very

simply how to get an answer that is not analytic at Tc.

LG Effective Action. Landau and Ginzburg can do even better. G(M) with

constant M is like the effective potential; if we let M(~x) vary in space, we can ask and

answer what is the effective action, G[M(~x)]. The Landau-Ginzburg effective action is

G[M ] =

∫
dd~x

(
a ~M2 + b

(
~M2
)2

+ c∂i ~M · ∂i ~M + ...

)
(9.3)

– now we are allowed to have gradients. c is a new unknown function of T ; let’s set it

to 1 by rescaling M . This just a scalar field theory (with several scalars) in euclidean

space. Each field has a mass
√
a (they are all the same as a consequence of the spin

rotation symmetry). So 1√
a

is a length scale, to which we turn next.

Definition of correlation length. Suppose we perturb the system by turning on

an external (we pick it) magnetic field (source for ~M) ~H, which adds to the hamiltonian

by − ~H · ~M . (So far we are doing Euclidean physics, which means equilibrium, no real

time dependence.) Pick the field to be small, so its effect is small and we can study

the linearized equations (let’s do it for T > Tc, so we’re expanding around M = 0):(
−∂2 + a

)
~M = ~H .

26In (9.2), I’ve averaged over all space; instead we could have averaged over just a big enough patch

to make it look smooth. We’ll ask ‘how big is big enough?’ next – the answer is ‘the correlation

length’.
27Don’t confuse a with the lattice spacing; sorry, ran out of letters.
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Recall the Green’s function G2 of a massive scalar field: G2 solves this equation in the

case where H is a delta function. Since the equation is linear, that solution determines

the solution for general H (this was why Green introduced Green’s functions):

M(x) =

∫
d3yG2(x, y)H(y) =

∫
d3y

(∫
d̄3k

ei
~k·(~x−~y)

~k2 + a

)
H(y)

=

∫
d3y

1

4π|~x− ~y|
e−
√
a|~x−~y|H(y). (9.4)

The Green’s function

GIJ
2 (x) =

〈
~M I(x) ~MJ(0)

〉
= δIJ

1

4π|~x|
e−
√
a|~x|

is diagonal in the vector index I, J so I’ve suppressed it in (9.4). G2 is the answer to

the question: if I perturb the magnetization at the origin, how does it respond at x?

The answer is that it dies off like〈
~M(x) ~M(0)

〉
∼ e−|x|/ξ

– this relation defines the correlation length ξ, which will depend on the parameters.

In the LG mean field theory, we find ξ = 1√
a
. The LG theory predicts the behavior of ξ

as we approach the phase transition to be ξ ∼ 1
(T−Tc)ν with ν = 1

2
. Again the exponent

is wrong in detail (we’ll see why below), but it’s a great start.

Now let’s return to the microscopic model (9.1). Away from the special value of

βJ , the correlation functions behave as

〈sisj〉connected ∼ e−
rij
ξ

where rij ≡ distance between sites i and j. Notice that the subscript connected means

that we need not specify whether we are above or below Tc, since it subtracts out

the disconnected bit 〈si〉 〈sj〉 by which their form differs. From the more microscopic

viewpoint, ξ is the length scale over which the values of the spins are highly correlated.

This allows us to answer the question of how much coarse-graining we need to do to

reach a continuum approximation: The continuum description in terms of

M(x) ≡
∑

i∈Rx 〈si〉
Vol(Rx)

(9.5)

is valid if we average over regions R (centered around the point x) with linear size

bigger than ξ.

9.1.3 Coarse-graining by block spins.
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Figure 4: A blocking transformation.

[from Álvarez-Gaumé and Vázquez-Mozo, hep-th/0510040]

We want to understand the connection be-

tween the microscopic spin model and the

macroscopic description of the magnetiza-

tion better, for example to systematically

improve upon the quantitative failures of

the LG mean field theory for the criti-

cal exponents. Kadanoff’s idea is to con-

sider a sequence of blocking transforma-

tions, whereby we group more and more

spins together, to interpolate between the

spin at a single site si, and the magnetiza-

tion averaged over the whole system, pass-

ing through (9.5) on the way.

The blocking (or ‘decimation’) transfor-

mation can be implemented in more detail for ising spins on the 2d square lattice as

follows (Fig. 4). Group the spins into blocks of four as shown; we will construct a new

coarser Ising system, where the sites of the new lattice correspond to the blocks of the

original one, and the spin at the new site is an average of the four. One way to do this

is majority rule:

sblock, b ≡ sign

( ∑
i∈block,b

si

)
where we break a tie by defining sign(0) = +1.

We want to write our original partition function in terms of the averaged spins on

a lattice with twice the lattice spacing. We’ll use the identity

1 =
∑
sblock

δ

(
sblock − sign(

∑
i∈block

si)

)
.

This is true for each block; we can insert one of these for each block. Split the original

sum into nested sums, the outer one over the blocks, and the inner one over the spins

within the block:

Z =
∑
{s}

e−βH[si] =
∑

{sblock, b}

∑
s∈block,b

∏
blocks

δ

(
sblock,b − sign

( ∑
i∈block,b

si

))
e−βH

(a)[s] .

The superscript (a) on the Hamiltonian is intended to indicate that the lattice spacing

is a. Now we interpret the inner sum as another example of integrating out stuff we

don’t care about to generate an effective interaction between the stuff we do care about:∑
s∈block,b

∏
blocks

δ

(
s(2a) − sign

( ∑
i∈block,b

si

))
e−βH

a[s] ≡ e−βH
(2a)[s(2a)]
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These sums are hard to actually do, except in 1d. But we don’t need to do them to

understand the form of the result.

As in our QM example from the previous lecture, the new Hamiltonian will be less

local than the original one – it won’t just be nearest neighbors in general:

H(2a)[s(2a)] = −J (2a)
∑
〈i,j〉

s
(2a)
i s

(2a)
j +−K(2a)

∑
〈〈i,j〉〉

s
(2a)
i s

(2a)
j + ...

where 〈〈i, j〉〉 means next-neighbors. Notice that I’ve used the same labels i, j for the

coarser lattice. We have rewritten the partition function as the same kind of model,

on a coarser lattice, with different values of the couplings:

Z =
∑
{s(2a)}

e−βH
(2a)[s(2a)] .

Now we can do it again. The decima-

tion operation defines a map on the space

of (in this case Ising) Hamiltonians:

H(a) 7→ H(2a) 7→ H(4a) 7→ H(8a) 7→ ...

The couplings J,K... are coordinates on

the space of Hamiltonians. Each time we

do it, we double the lattice spacing; the

correlation length in units of the lattice

spacing gets halved, ξ 7→ ξ/2. This operation is called a ‘renormalization group trans-

formation’ but notice that it is very much not invertible; we lose information about

the short-distance stuff by integrating it out.

[End of Lecture 33]

RG fixed points. Where can it end? One thing that can happen is that the form

of the Hamiltonian can stop changing:

H(a) 7→ H(2a) 7→ H(4a) 7→ H(8a) 7→ ... 7→ H? 7→ H? 7→ H? ...

The fixed point hamiltionian H?, which is not changed by the rescaling operation, is

scale invariant. What can its correlation length be if it is invariant under ξ → ξ/2?

Either ξ = 0 (the mass of the fields go to infinity and there is nothing left to integrate)

or ξ = ∞ (the mass goes to zero and we have more to discuss, we can call this a

nontrivial fixed point).

Near a nontrivial fixed point, once ξ � a, the original lattice spacing, we are quite

justified in using a continuum description, to which we return in subsection 9.2.
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Perturbations of a fixed point. Before doing any more work, though, we can

examine the possible behaviors of the RG flow near a fixed point. Consider a fixed

point Hamiltonian H?, and move away from it slightly by changing one of the couplings

a little bit:

H = H? + δgO.

What does the RG do to this to leading order in δg? The possibilities are:

Figure 5: A possible set of RG flows for a

system with two couplings λ1,2. [from Álvarez-Gaumé

and Vázquez-Mozo, hep-th/0510040]

• If the flow takes it back to the orig-

inal fixed point, O (and its asso-

ciated coupling δg) is called irrel-

evant.

• If the flow takes it away from the

original fixed point, O is called a

relevant perturbation of H?.

• The new H might also be a fixed

point, at least to this order in δg.

Such a coupling (and the associated

operator O) is called marginal. If

the new H really is a new fixed point, not just to leading order in δg, then O
is called exactly marginal. Usually it goes one way or the other and is called

marginally relevant or marginally irrelevant.

Note the infrared-centric terminology.

Comment on Universality: The Ising model is a model of many microscopically-

different-looking systems. It can be a model of spins like we imagined above. Or it

could be a model of a lattice gas – we say spin up at site i indicates the presence of a

gas molecule there, and spin down represents its absence. These different models will

naturally have different microscopic interactions. But there will only be so many fixed

points of the flow in the space of Hamiltonians on this system of 2-valued variables.

This idea of the paucity of fixed points underlies Kadanoff and Wilson’s explanation of

the experimental phenomenon of universality: the same critical exponents arise from

very different-seeming systems (e.g. the Curie point of a magnet and the liquid-gas

critical point).
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9.2 The continuum version of blocking

[Zee, §VI.8 (page 362 of 2d Ed.)]

Here is a very different starting point from which to approach the same critical

point as in the previous subsection:

Consider the φ4 theory in Euclidean

space, with negative m2 (and no φk terms

with odd k). This potential has two min-

ima and a Z2 symmetry that interchanges

them, φ → −φ. If we squint at a con-

figuration of φ, we can label regions of

space by the sign of φ (as in the figure at

right). The kinetic term for φ will make

nearby regions want to agree, just like the

J
∑
〈ij〉 σiσj term in the Ising model. So

the critical point described by taking m2

near zero is plausibly the same as the one

obtained from the lattice Ising model described above28.

We will study the integral

ZΛ ≡
∫

Λ

[Dφ]e−
∫
dDxL(φ). (9.6)

Here the specification
∫

Λ
says that we integrate over field configurations φ(x) =

∫
d̄Dkeikxφk

such that φk = 0 for |k| ≡
√∑D

i=1 k
2
i > Λ. Think of 2π/Λ as the lattice spacing29 –

there just aren’t modes of shorter wavelength. We are using (again) a cutoff on the

euclidean momenta k2
E ≤ Λ2.

We want to understand (9.6) by some coarse-graining procedure. Let us imitate

the block spin procedure. Field variations within blocks of space of linear size na have

wavenumbers greater than 2π
na

. (These modes average to zero on larger blocks; modes

with larger wavenumber encode the variation between these blocks.) So the analog

of the partition function after a single blocking step is the following: Break up the

configurations into pieces:

φ(x) =

∫
d̄keikxφk ≡ φ< + φ> .

28 For a more sophisticated argument for this equivalence, see page 7-9 of Polyakov, Gauge Fields

and Strings.
29This cutoff is not precisely the same as have a lattice; with a lattice, the momentum space is

periodic: eikxn = eik(na) = ei(k+ 2π
a )(na) for n ∈ Z. Morally it is the same.
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Here φ< has nonzero fourier components only for |k| ≤ Λ − δΛ and φ> has nonzero

fourier components only for Λ − δΛ ≤ |k| ≤ Λ. Zee calls the two parts ‘smooth’ and

‘wiggly’. They could also be called ‘slow’ and ‘fast’ or ‘light’ and ‘heavy’. We want to

do the integral over the heavy/wiggly/fast modes to develop an effective action for the

light/smooth/slow modes:

ZΛ =

∫
Λ−δΛ

[Dφ<]e−
∫
dDxL(φ<)

∫
[Dφ>]e−

∫
dDxL1(φ<,φ>)

where L1 contains all the dependence on φ> (and no other terms).

Just as with the spin sums, these integrals are hard to actually do, except in a

gaussian theory. But again we don’t need to do them to understand the form of the

result. First give it a name:

e−
∫
dDxδL(φ<) ≡

∫
[Dφ>]e−

∫
dDxL1(φ<,φ>) (9.7)

so once we’ve done the integral we’ll find

ZΛ =

∫
Λ−δΛ

[Dφ<]e−
∫
dDx(L(φ<)+δL(φ<)) . (9.8)

To get a feeling for the form of δL (and because there is little reason not to) consider

the more general Lagrangian

L =
1

2
(∂φ)2 +

∑
n

gnφ
n + ... (9.9)

where we include all possible terms consistent with the symmetries (rotation invariance,

maybe φ→ −φ...). Then we can find an explicit expression for L1:∫
dDxL1(φ<, φ>) =

∫
dDx

(
1

2
(∂φ>)2 +

1

2
m2 (φ>)

2
+ ...

)
(I write the integral so that I can ignore terms that integrate to zero such as ∂φ<∂φ>.)

This is the action for a scalar field φ> interacting with itself and with a (slowly-varying)

background field φ<. But what can the result δL be but something of the form (9.9)

again, with different coefficients? The result is to shift the couplings gn → gn + δgn.

(This includes the coefficient of the kinetic term and also of the higher-derivative terms

which are hidden in the ... in (9.9). You will see in a moment the logic behind which

terms I hid.)

Finally, so that we can compare steps of the procedure to each other, we rescale

our rulers. We’d like to change units so that
∫

Λ−δΛ is a
∫

Λ
with different couplings; we

accomplish this by defining

Λ− δΛ ≡ bΛ, b < 1.
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In
∫

Λ−δΛ, we integrate over fields with |k| < bΛ. Change variables: k = bk′ so now

|k′| < Λ. So x = x′/b, ∂′ ≡ ∂/∂x′ = 1
b
∂x and wavefunctions are preserved eikx = eik

′x′ .

Plug this into the action∫
dDxL(φ<) =

∫
dDx′b−D

(
1

2
b2 (∂′φ<)

2
+
∑
n

(gn + δgn) (φ<)
n

+ ...

)

We can make this look like L again by rescaling the field variable: b2−D (∂′φ<)2 ≡
(∂′φ′)2 (i.e. φ′ ≡ b

1
2

(2−D)φ<):∫
dDx′L(φ<) =

∫
dDx′

(
1

2
(∂′φ′)

2
+
∑
n

(gn + δgn) b−D+
n(D−2)

2 (φ′)n + ...

)

So the end result is that integrating out a momentum shell of thickness δΛ ≡ (1−b)Λ
results in a change of the couplings to

g′n = b
n(D−2)

2
−D (gn + δgn) .

This procedure produces a flow on the space of actions.

Ignore the interaction corrections, δgn, for a moment. Then, since b < 1, the

couplings with n(D−2)
2
−D > 0 get smaller and smaller as we integrate out more shells.

If we are interested in only the longest-wavelength modes, we can ignore these terms.

They are irrelevant. Couplings (‘operators’) with n(D−2)
2
− D < 0 get bigger and are

relevant.

The mass term has n = 2 and (m′)2 = b−2m2 is always relevant for any D <∞. So

far, the counting is the same as our naive dimensional analysis. That’s because we left

out the δL term! This term can make an important difference, even in perturbation

theory, for the fate of marginal operators (such as φ4 in D = 4), where the would-be-big

tree-level term is agnostic about whether they grow or shrink in the IR.

Notice that starting from (9.6) we are assuming that the system has a rotation

invariance in euclidean momentum. If one of those euclidean directions is time, this

follows from Lorentz invariance. This simplifies the discussion. But for non-relativistic

systems, it is often necessary to scale time differently from space. The relative scaling

z in ~x′ = b~x, t′ = bzt is called the dynamical critical exponent.

The definition of the beta function and of a fixed point theory is just as it was in

the first lecture.

At this point we need to pick an example in which to include the interaction term.
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9.3 An extended example: XY model

[R. Shankar, Rev. Mod. Phys. 66 (1994) 129]

Consider complex bosons in D dimensions. I am a little tired of a real scalar field,

so instead we will study two real scalar fields φ = φ1 + iφ2. We can define this model,

for example, on a euclidean lattice, by an action of the form

S[φ, φ?] =
1

2

∑
n,i

|φ(n)− φ(n+ i)|2 +
∑
n

u0|φ(n)|4 . (9.10)

Here n labels sites of some (e.g. hypercubic) lattice and i labels the (8 in the 4d hy-

percubic case) links connecting neighboring sites. We’ll call the lattice spacing 2π/Λ1.

In terms of Fourier modes, this is

S[φ, φ?] = −
∫
|k|<Λ0

d̄Dkφ?(k)J(k)φ(k) + Sint .

For the hyper-cubic lattice, we get (the second step is Taylor expansion)

J(k) = 2

(
D∑
µ=1

(cos akµ − 1)

)
ka�1'

∑
µ

(
a2k2

µ +
a4

4 · 3
k4
µ...

)
.

The energy function J(k) only has the discrete rotation symmetries of the lattice (90◦

rotations for the hypercubic lattice). But the leading term at small wavenumber has

full rotation invariance; in position space, this term is a2∂µφ∂
µφ?. The next term∫

d̄Dk a4k4|φk|2 =
∫
dDx a4φ?

∑
µ ∂

4
µφ, which breaks the rotation group to a discrete

subgroup, is irrelevant by the counting we did above:
∫
dDx∂4φ2 ∼ sD−4−2D−2

2 = s−2.

This means that rotation invariance emerges on its own.

30 [End of Lecture 34]

The path integral is defined by

Z ≡
∫

[dφ?dφ]|k|<Λ0︸ ︷︷ ︸
≡
∏
|k|<Λ0

dReφ(k)dImφ(k)
π

=
∏
|k|<Λ0

dφ?(k)dφ(k)
2πi

e−S[φ,φ?] (9.11)

There is a U(1) global symmetry which acts by

φ(k)→ eiθφ(k), φ?(k)→ e−iθφ?(k) . (9.12)

30Confession: the restriction on the momenta in the exact lattice model should be to a fundamental

domain for the identification kµ ≡ kµ + Λµ1 ; I am going to replace this right away with a rotation-

invariant cutoff on the magnitude k2 ≡ kµkµ ≤ Λ0 of the euclidean momentum. This is an unimportant

lie for our purposes.
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In terms of φ1,2, it acts by

(
φ1

φ2

)
→
(

cos θ sin θ

− sin θ cos θ

)(
φ1

φ2

)
, which we should call SO(2)

31.

With u0 = 0, this is a bunch of gaussian integrals, and everything can be computed

by Wick from the two-point function:

〈φ?(k1)φ(k2)〉 = (2π)D δD(k1 − k2)
1

k2
1

= (2π)D δD(k1 − k2)G(k1).

Although this gaussian model is trivial, we can still do the RG to it. (We will turn

on the interactions in a moment.) An RG step has three ingredients, of which I’ve

emphasized only two so far:

1. Integrate out the fast modes, i.e. φ>, with |k| ∈ (Λ− δΛ,Λ). I will call Λ− δΛ ≡
Λ/s, and32 s > 1, we will regard s as close to 1: s− 1� 1.

Z =

∫ ∏
0≤|k|≤Λ/s

dφ<(k)


∫ ∏

Λ/s≤|k|≤Λ

dφ>(k)e

−

S0[φ<] + S0[φ>]︸ ︷︷ ︸
quadratic

+ Sint[φ
<, φ>]︸ ︷︷ ︸

mixes fast and slow




=

∫
[dφ<]e−S0[φ<]

〈
e−Sint[φ

<,φ.]
〉

0,>︸ ︷︷ ︸
average over φ>, with gaussian measure

Z0,> (9.13)

The factor of Z0,> is independent of φ< and can be ignored.

2. Rescale momenta so that we may compare successive steps: k̃ ≡ sk lies in the

same interval |k̃| ∈ (0,Λ).

3. Are the actions s(φ) = rφ2 + uφ4 and s̃(ψ) = 4rψ2 + 16uψ4 different? No: let

2ψ ≡ φ. We can resacle the field variable at each step:

φ̃(k̃) ≡ ζ−1φ<(k̃/s).

We will choose the ‘wavefunction renormalization’ factor ζ so that the kinetic

terms are fixed.

RG for free field

31Actually, the symmetry of (9.11) is O(2), since (φ1, φ2) → (−φ1, φ2) is also a symmetry and has

determinant minus one.
32I note that s = 1/b from the previous subsection; sorry.
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If Sint = 0, then (9.13) gives

S̃[φ<] =

∫
|k|<Λ/s

d̄Dkφ?<(k)k2φ>(k)
steps 2 and 3

= s−D−2ζ2

∫
|k̃|<Λ

φ̃?(k̃)k̃2φ̃(k̃)d̄Dk̃ .

With ζ ≡ s
D+2

2 , the Gaussian action is a fixed point of the RG step:

S̃[φ̃] = S[φ] = S?.

Warning: the field φ(k) is the Fourier transform of the field φ(x) that we considered

above. They are different by an integral over space or momenta: φ(x) =
∫

d̄Dkφ(k)eikx.

So they scale differently. The result that ζ = s
D+2

2 is perfectly consistent with our

earlier result that φ(x) scales like s
2−D

2 .

Now we consider perturbations. We’ll only study those that preserve the symmetry

(9.12). We can order them by their degree in φ. The first nontrivial case preserving

the symmetry is

δS2[φ] =

∫
|k|<Λ

d̄Dkφ?(k)φ(k)r(k) .

Here r(k) is a coupling function. If its position-space representation is local, it has a

nice Taylor expansion about k = 0:

r(k) = r0︸︷︷︸
≡m2

0

+k2r2 + ...

(I also assumed rotation invariance.) The same manipulation as above gives

δ̃S2[φ̃(k̃)] = s−D+D+2
2

2=2

∫
|k̃|<Λ

φ̃?(k̃)r̃(k̃)φ̃(k̃)d̄Dk̃

with r̃(k̃) = s2r(k̃/s), so that

r̃0 = s2r0︸ ︷︷ ︸
relevant

, r̃2 = s0r2︸ ︷︷ ︸
marginal by design

, r̃4 = s−2r4︸ ︷︷ ︸
irrelevant

...

Quartic perturbation

δS4 = Sint =

∫
Λ

φ?(4)φ?(3)φ(2)φ(1)u(4321)

This is some shorthand notation for

δS4 = Sint =
1

(2!)2

∫ 4∏
i=1

d̄Dki(2π)DδD(k4+k3−k2−k1)φ?(k4)φ?(k3)φ(k2)φ(k1)u(k4k3k2k1) .
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The delta function maintains translation invariance in real space. Here u(4321) is some

general function, but only the bit with u(4321) = u(3421) = u(4312) matters. This

interaction couples the fast and slow modes. We need to evaluate

e−S̃[φ<] = e−S0[φ<]
〈
e−δS[φ<,φ>]

〉
0,>

.

A tool at our disposal is the cumulant expansion, aka the exponentiation of the discon-

nected diagrams: 〈
e−Ω
〉

= e−〈Ω〉+
1
2(〈Ω2〉−〈Ω〉2)+...

So

δ̃S = 〈δS〉>,0︸ ︷︷ ︸
∼u0

−1

2

(〈
δS2
〉
>,0
− 〈δS〉2>,0

)
︸ ︷︷ ︸

∼u2
0

+...

So this expansion is a perturbative expansion in u0.

First the first term (∼ u0):

〈δS〉>,0 =
u0

(2!)2

∫
|k|<Λ

〈(φ< + φ>)?4(φ< + φ>)?3(φ< + φ>)2(φ< + φ>)1u(4321)〉>,0

This is made of 16 terms which can be

decomposed as follows, and illustrated by

the Feynman diagrams at right. These

Feynman diagrams are just like the usual

ones with the important difference that

the loop momenta only run over the shell

from |k| = Λ/s to |k| = Λ. The only al-

lowed external lines are the slow modes.

The ones that contribute to the O(u0)

term all have a single 4-point vertex.

(a) 1 diagram with all external lines be-

ing slow modes. This gives the tree

level interaction term for the slow

modes.

(b) 1 diagram with only fast modes in-

volved in the vertex. This con-

tributes to the irrelevant constant

Z0,>.

(c) 8 diagrams with an odd number of

fast modes; these all vanish by the

usual Wick business.
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(d) 6 diagrams with 2 slow 2 fast. The

fast modes must be contracted and

this makes a loop. The arrows (rep-

resenting the flow of the U(1) charge)

must work out to allow nonzero con-

tractions (recall that 〈φφ〉 = 0 by

charge conservation).

So the only interesting ones are diagrams of type (d), which give

δ̃S2(φ<) =
u0

(2!)2

∫
|k|<Λ

〈(φ?>(4)φ?<(3) + φ?>(3)φ?<(4))(φ>(2)φ<(1) + φ>(1)φ<(2))〉0,>

= u0

∫
|k|<Λ/s

d̄Dkφ?<(k)φ<(k) ·
∫ Λ

Λ/s

d̄Dp
1

p2︸ ︷︷ ︸
= ΩD−1

(2π)D

∫ Λ

Λ/s
kD−3dk

D=4
= 2π2

(2π)4
Λ2

2
(1− s−2) .

(9.14)

δ̃S2[φ̃<(k̃)] = u0s
2

∫
|k̃|<Λ

d̄4kφ̃?(k̃)φ̃(k̃)
Λ2

16π2
(1− s−2).

δr0 =
u0Λ2

16π2
(s2 − 1) .

The correction to the mass is of order the cutoff.

In D dimensions, we get instead

δr0 =
ΩD−1

(2π)D
u0ΛD−2(s2 − s4−D).

The next term in the cumulant expansion

Now for theO(u2
0) term in δ̃S. The diagrammatic representation of 1

2

(
〈δS2〉 − 〈δS〉2

)
is: all connected diagrams containing two 4-point vertices, with only external slow lines.

The second term cancels all disconnected diagrams. Diagrammatically, these are (we

are in Euclidean spacetime here, so I don’t mind violating my rule that time goes to

the left):

93



These correct the quartic coupling u = u0 + u1k
2 + .... We care about the sign of δu0,

because in D = 4 it is marginal. Even small corrections will make a big difference.

ũ(k̃4, ...k̃1) = u0−u2
0

∫ Λ

Λ/s

d̄Dk︸ ︷︷ ︸
≡
∫
dΛ

(
1

k2|k − (k̃3 − k̃1)/s|2
+

1

k2|k − (k̃4 − k̃1)/s|2
+

1

2

1

k2| − k − (k̃1 + k̃2)/s|2

)

Note the symmetry factor in the s-channel diagram, which you can see directly from

the cumulant expression.

[End of Lecture 35]

The most interesting part of this expression is the correction to u0, which is what

we get when we set the external momenta to zero:

ũ(k = 0) = ũ0 = u0 − u2
0

5

2

∫
dΛ

k3dk

k4︸ ︷︷ ︸
=log s

· Ω3

(2π)4︸ ︷︷ ︸
= 1

16π2

.

Let Λ(s) ≡ Λ0/s ≡ Λ0e
−` so s = e`, ` = log Λ0/Λ and Λ d

dΛ
= s∂s = ∂`. Large ` is

the IR. {
du0

d`
= − 5

16π2u
2
0 ≡ −bu2

0

dr̂0
d`

= 2r̂0 + u0

16π2 = 2r0 + au0

. (9.15)

Here a, b > 0 are constants, and r̂0 ≡ r0Λ2 is the mass2 in units of the cutoff. (Note that

the usual high-energy definition of the beta function has the opposite sign, dg
d`

= −βg.)
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These equations can be solved in terms of two

initial conditions:

u0(`) =
u0(0)

1 + bu0(0)`

`→∞,u0(0)>0∼ 1

`
=

1

log Λ0/Λ
→ 0.

u0 is a marginally irrelevant perturbation of the

gaussian fixed point. This theory is not asymptot-

ically free33 The phase diagram is at right. There’s

just the one fixed Gaussian point. Notice that it’s

not true that an arbitrary small u0 added to the

gaussian FP runs back to the gaussian FP. r0 runs

too:

r0(`) = e2`

[
r0(0) +

∫ `

0

e−2`′ au0(0)

1 + bu0(0)`′
d`′
]
.

There is a curve of choices of initial data in (u0(0), r0(0)) which ends up at the origin –

it’s when the thing in brackets vanishes; for small u0, this is the line r0(0) = −a
2
u0(0).

Following Wilson and Fisher, it is an extremely

good idea to consider dimensions other than 4,

D ≡ 4−ε. We’ve already been willing to do this as

a regulator of short-distance physics; it turns out

that it also resolves some short-distance physics in

the phase diagram. If D 6= 4, the quartic interaction is no longer marginal at tree level,

but rather scales like sε. The RG equation is modified to

du0

dt
= εu0 − bu2

0 . (9.16)

For ε > 0 (D < 4) there is another fixed point at u?0 = ε/b > 0. And in fact the

Gaussian FP is unstable, and this Wilson-Fisher fixed point is the stable one in the IR

(see fig at right, which is drawn along the critical surface leading to r0(∞) = 0.). This

situation allows one to calculate (universal) critical exponents at the fixed point in an

expansion in ε.

As ε→ 0, the two fixed points coalesce.

The W-F fixed point describes a continuous phase transition between ordered and

disordered phases. An external variable (roughly r0) must be tuned to reach the phase

33This statement was for u0(0) > 0. For u0(0) < 0, it is AF (this was an observation of Symanzik,

before the study of Yang-Mills), but seems likely to be unstable. For an interesting claim to the

contrary, see here if you are feeling brave. It would be nice to know for sure.
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Figure 6: The φ4 phase diagram. If r0(` = ∞) > 0, the effective potential for the uniform ‘magne-

tization’ has a minimum at the origin; this is the disordered phase, where there is no magnetization.

If r0(` =∞) = V ′′eff < 0, the effective potential has minima away from the origin, and the groundstate

breaks the symmetry (here φ→ eiθφ); this is the ordered phase.

transition. A physical realization of this is the following: think of our euclidean path

integral as a thermal partition function at temperature 1/β:

Z =

∫
[Dφ]e−βH[φ] ;

here we are integrating over thermal fluctuations of classical fields. Above we’ve studied

the case with O(2) symmetry (called the XY model). WLOG, we can choose normalize

our fields so that the coefficient β determines r0. The critical value of r0 then realizes

the critical temperature at which this system goes from a high-temperature disordered

phase to a low-temperature ordered phase. For this kind of application, D ≤ 3 is most

interesting physically. We will see that the ε expansion about D = 4 is nevertheless

quite useful.

You could ask me what it means for the number of dimensions D to be not an

integer. One correct answer is that we have constructed various well-defined functions
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of continuous D simply by keeping D arbitrary; basically all we need to know is the

volume of a D-sphere for continuous D, (6.38). An also-correct answer that some

people (e.g. me) find more satisfying is is the following. Suppose we can define our

QFT by a discrete model, defined on a discretized space (like in (9.10)). Then we can

also put the model on a graph whose fractal dimension is not an integer. Evidence that

this is a physical realization of QFT in non-integer dimensions is given in [Gefen-Meir-

Mandelbrot-Aharony] and [Gefen-Mandelbrot-Aharony]. Some subtle and interesting

issues about uniqueness and unitarity of the field theories so defined are raised here

and here.

Important lessons.

• Elimination of modes does not introduce new singularities into the couplings. At

each step of the RG, we integrate out a finite-width shell in momentum space –

we are doing integrals which are convergent in the infrared and ultraviolet.

• The RG plays nicely with symmetries. In particular any symmetry of the regu-

lated model is a symmetry of the long-wavelength effective action.34

• Some people conclude from the field theory calculation of the φ4 beta function

that φ4 theory “does not exist” or “is trivial”, in the sense that if we demand that

this description is valid up to arbitrarily short distances, we would need to pick

u(Λ =∞) =∞ in order to get a finite interaction strength at long wavelengths.

You can now see that this is a ridiculous conclusion. Obviously the theory exists

in a useful sense. It can easily be defined at short distances (for example) in

terms of the lattice model we wrote at the beginning of this subsection. Similar

statements apply to QED.

• The corrections to the mass of the scalar field are of order of the cutoff. This

makes it hard to understand how you could arrive in the IR and find that an

interacting scalar field has a mass which is much smaller than the cutoff. Yet,

there seems to be a Higgs boson with m ' 125 GeV, and no cutoff on the

Standard Model in sight. This is a mystery.

• As Tony Zee says, a more accurate (if less catchy) name than ‘renormalization

group’ would be ‘the trick of doing the path integral a little at a time’.

34The extra qualifier about the regulated model is important because some symmetries of continuum

classical field theories cannot be realized as symmetries of well-defined quantum field theories. We

will discuss this phenomenon, called anomalies, in the near future.
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9.3.1 Comparison with renormalization by counterterms

Is this procedure the same as ‘renormalization’ in the high-energy physics sense of

sweeping divergences under the rug of bare couplings? Suppose we impose the renor-

malization condition that Γ4(k4...k1) ≡ Γ(4321), the 1PI 4-point vertex, is cutoff inde-

pendent. Its leading contributions come from the diagrams: +

(where now the diagrams denote amputated amplitudes, the arrows indicate flow of

scalar charge (since we’re studying the case with O(2) symmetry) and also momentum,

and the integrals run over all momenta up to the cutoff). Clearly there is already a

big similarity. In more detail, this is

Γ(4321) = u0 − u2
0

∫ Λ

0

d̄Dk(
1

(k2 + r0)(|k + k3 − k1|2 + r0)
+

1

(k2 + r0)(|k + k4 − k1|2 + r0)
+

1

2

1

(k2 + r0)(| − k + k1 + k2|2 + r0)

)
And in particular, the bit that matters is

Γ(0000) = u0 − u2
0

5

32π2
log

Λ2

r0

.

Demanding that this be independent of the cutoff Λ = e−`Λ0,

0 = ∂` (Γ(0000)) = −Λ
d

dΛ
Γ(0000)

gives

0 =
du0

d`
+

5

16π2
u2

0 +O(u3
0)

=⇒ βu0 = − 5

16π2
u2

0 +O(u3
0)

as before. (The bit that would come from ∂`u
2
0 in the second term is of order u3

0 and

so of the order of things we are already neglecting.)

I leave it to you to show that the flow for r0 that results from demanding that

〈φ(k)φ?(k)〉 have a pole at k2 = −m2 (with m independent of the cutoff) gives the

same flow we found above.

It is worth noting that although the continuum field theory perspective with coun-

terterms is less philosophically satisfying, it is often easier for actual calculations than

integrating momentum shells, mainly because we can use a convenient regulator like

dim reg.

[End of Lecture 36]
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9.3.2 Comment on critical exponents

[Zinn-Justin, chapter 25, Peskin, chapter 12.5, Stone, chapter 16, Cardy, and the classic

Kogut-Wilson]

Recall that the Landau-Ginzburg mean field theory made a (wrong) prediction for

the critical exponents at the Ising transition:

〈M〉 ∼ (Tc − T )β for T < Tc, ξ ∼ (Tc − T )−ν

with βMFT = 1
2
, νMFT = 1

2
. This answer was wrong (e.g. for the Ising transition in

(euclidean) D = 3, which describes uniaxial magnets (spin is ±1) or the liquid-gas

critical point) because it simply ignored the effects of fluctuations of the modes of

nonzero wavelength, i.e. the δL bit in (9.8). I emphasize that these numbers are worth

getting right because they are universal – they are properties of a fixed point, which

are completely independent of any microscopic details.

Now that we have learned to include the effects of fluctuations at all length scales on

the long-wavelength physics, we can do better. We’ve done a calculation which includes

fluctuations at the transition for an XY magnet (the spin has two components, and

a U(1) symmetry that rotates them into each other), and is also relevant to certain

systems of bosons with conserved particle number. The mean field theory prediction

for the exponents is the same as for the Ising case (recall that we did the calculation

for a magnetization field with an arbitrary number N of components, and in fact the

mean field theory prediction is independent of N ≥ 1; we’ll say more about general

N -component magnets below).

In general there are many scaling relations between various critical exponents, which

can be understood beginning from the effective action, and were understood before

the correct calculation of the exponents. So not all of them are independent. For

illustration, we will briefly discuss two independent exponents.

Order parameter exponent, η. The simplest critical exponent to understand

from what we’ve done so far is η, the exponent associated with the anomalous dimension

of the field φ itself. (It is not the easiest to actually calculate, however.) This can be

defined in terms of the (momentum-space) amputated two-point function of φ (that is,

Γ2(p) = 1/G̃(p)) as

Γ2(p) =
ξ−1�p�Λ
'

( p
Λ

)2−η

where ξ is the correlation length and Λ is the UV cutoff. This looks a bit crazy – at

nonzero η, the full propagator has a weird power-law singularity instead of a 1
p2−m2 ,

and in position space it is a power law G2(x) ∼ 1
|x|D−2+η , instead of an exponential

decay. An example where all the details can be understood is the operator eiαX the

massless scalar field X in 1+1 dimensions (see the homework).
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But how can this happen in perturbation theory?

Consider physics near the gaussian fixed point, where

η must be small, in which case we can expand:

Γ2(p)
ξ−1�p�Λ,η�1

'
( p

Λ

)2 (
e−η log(p/Λ)

)
=
( p

Λ

)2

(1− η log (p/Λ) + ...)

In the φ4 theory, η = 0 at one loop. The leading correction to η comes from the ‘sunrise’

(or ‘eyeball’) diagram at right, at two loops. So in this model, η ∼ g2
? ∼ ε2. Γ2(p) is

the 1PI momentum space 2-point vertex, i.e. the kinetic operator. We can interpret a

nonzero η as saying that the dimension of φ, which in the free theory was ∆0 = 2−D
2

, has

been modified by the interactions to ∆ = 2−D
2
−η/2. η/2 is the anomalous dimension of

φ. Quantum mechanics violates (naive) dimensional analysis; it must, since it violates

classical scale invariance. Of course (slightly more sophisticated) dimensional analysis

is still true – the extra length scale is the UV cutoff, or some other scale involved in

the renormalization procedure.

Correlation length exponent, ν. Returning to the correlation length exponent

ν, we can proceed as follows. First we relate the scaling of the correlation length to the

scaling behavior of the relevant perturbation that takes us away from from the fixed

point. The latter we will evaluate subsequently in our example. (There is actually an

easier way to do this, discussed in §9.3.3, but this will be instructive.)

The correlation length is the length scale above which the relevant perturbation

gets big and cuts off the critical fluctuations of the fixed point. As the actual fixed

point is approached, this happens at longer and longer scales: ξ diverges at a rate

determined by the exponent ν.

Suppose we begin our RG procedure with a perturbation of a fixed-point Hamilto-

nian by a relevant operator O:

H(ξ1) = H? + δ1O .

Under a step of the RG, ξ1 → s−1ξ1, δ1 → s∆δ1, where I have defined ∆ to be the

scaling dimension of the operator O. Then after N steps, δ = sN∆δ1, ξ = s−Nξ1.

Eliminating sN from these equations we get the relation

ξ = ξ1

(
δ

δ1

)− 1
∆

(9.17)

which is the definition of the correlation length exponent ν, and we conclude that

ν = 1
∆

.

Here is a better way to think about this. At the critical point, the two-point function

of the order parameter G(x) ≡ 〈φ(x)φ(0)〉 is a power law in x, specified by η. Away
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from the critical point, there is another scale, namely the size of the perturbation – the

deviation of the microscopic knob δ0 from its critical value, such as T − Tc. Therefore,

dimensional analysis says that G(x) takes the form

G(x) =
1

|x|D−2

(
1

|x|/a

)η
Φ
(
|x|δ1/∆

0

)
where the argument of the scaling function Φ is dimensionless. (I emphasized that

some length scale a, such as the lattice spacing, must make up the extra engineering

dimensions to allow for an anomalous dimension of the field at the critical point.)

When x � all other length scales, G(x) should decay exponentially, and the decay

length must then be ξ ∼ δ
− 1

∆
0 which says ν = 1

∆
.

In the case of φ4 theory, r0 is the parameter that an experimentalist must carefully

tune to access the critical point (what I just called δ0) – it is the coefficient of the

relevant operator O = |φ|2 which takes us away from the critical point; it plays the

role of T − Tc.

At the free fixed point the dimension of |φ|2 is just twice that of φ, and we get

ν−1 = ∆
(0)

|φ|2 = 2D−2
2

= D− 2. At the nontrivial fixed point, however, notice that |φ|2 is

a composite operator in an interacting field theory. In particular, its scaling dimension

is not just twice that of φ! This requires a bit of a digression.

Renormalization of composite operators.

[Peskin §12.4] Perturbing the Wilson-Fisher fixed point by this seemingly-innocuous

quadratic operator, is then no longer quite so innocent. In particular, we must define

what we mean by the operator |φ|2! One way to define it (from the counterterms point

of view, now, following Peskin and Zinn-Justin) is by adding an extra renormalization

condition35. We can define the normalization of the composite operator O(k) ≡ |φ|2(k)

by the condition that its (amputated) 3-point function gives

〈OΛ(k)φ(p)φ?(q)〉 = 1 at p2 = q2 = k2 = −Λ2 .

The subscript onOΛ(k) is to emphasize that its (multiplicative) normalization is defined

by a renormalization condition at scale (spacelike momentum) Λ. Just like for the

‘elementary fields’, we can define a wavefunction renormalization factor:

OΛ ≡ Z−1
O (Λ)O∞

where O∞ ≡ φ?φ is the bare product of fields.

35 Note that various factors differ from Peskin’s discussion in §12.4 because I am discussing a

complex field φ 6= φ?; this changes the symmetry factors.
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We can represent the implementation of this prescription diagramatically. In the

diagram above, the double line is a new kind of thing – it represents the insertion of

OΛ. The vertex where it meets the two φ lines is not the 4-point vertex associated with

the interaction – two φs can turn into two φs even in the free theory. The one-loop,

1PI correction to this correlator is (the second diagram on the RHS of the figure)36

(−u0)

∫ ∞
0

d̄D`
1

`2

1

(k + `)2
= −u0

c

k4−D

where c is a number (I think it is c =
Γ(2−D

2 )
(4π)2 ) and we know the k dependence of the

integral by scaling. If you like, I am using dimensional regularization here, thinking of

the answer as an analytic function of D.

Imposing the renormalization condition requires us to add a counterterm diagram

(part of the definition of |φ|2, indicated by the ⊗ in the diagrams above) which adds

Z−1
O (Λ)− 1 ≡ δ|φ|2 =

u0c

Λ4−D .

We can infer the dimension of (the well-defined) |φ|2Λ by writing a renormalization

group equation for our 3-point function

G(2;1) ≡
〈
|φ|2Λ(k)φ(p)φ?(q)

〉
.

0
!

= Λ
d

dΛ
G(n;1) =

(
Λ
∂

∂Λ
+ β(u)

∂

∂u
+ nγφ + γO

)
G(n;1) .

This (Callan-Symanzik equation) is the demand that physics is independent of the

cutoff. γO ≡ Λ ∂
∂Λ

logZO(Λ) is the anomalous dimension of the operator O, roughly

the addition to its engineering dimension coming from the interactions (similarly γφ ≡
Λ ∂
∂Λ

logZφ(Λ)). To leading order in u0, we learn that

γO = Λ
∂

∂Λ

(
−δO +

n

2
δZ

)
36At higher order in u0, the wavefunction renormalization of φ will also contribute to the renormal-

ization of |φ|2.

102



which for our example with n = 2 gives the anomalous dimension of |φ|2 to be (just

the first term to this order since δZ is the wavefunction renormalization of φ, which as

we discussed first happens at O(u2
0))

γ|φ|2 =
2u0

16π2
.

Plugging in numbers, we get, at the N = 2 (XY) Wilson-Fisher fixed point at

u?0 = ε/b,

ν =
1

∆|φ|2
=

1

2− γ|φ|2
D=4−ε

=
1

2− 2u?0
16π2

=
1

2− 216π2

5
ε

16π2

=
1

2− 2ε
5

.

(for the Ising fixed point the 5/2 would be replaced by N+8
N+2
|N=1 = 3).

It is rather amazing how well one can do at estimating the answers for D = 3 by

expanding in ε = 4−D, keeping the leading order correction, and setting ε = 1. The

answer from experiment and the lattice is νD=3,N=2 ' 0.67, while we find νε=1,N=2 '
0.63. It is better than mean field theory for sure. You can do even better by Padé

approximating the ε expansion. Currently (and for the foreseeable future) the best

answer comes from the conformal bootstrap.

One final comment about defining and renormalizing composite operators: if there

are multiple operators with the same quantum numbers and the same scaling di-

mension, they will mix under renormalization. That is, in order to obtain cutoff-

independent correlators of these operators, their definition must be of the form

OiΛ =
(
Z−1(Λ)

)
ij
Oj∞

– there is a wavefunction renormalization matrix, and a matrix of anomalous dimensions

γij = −Λ∂Λ log
(
Z−1(Λ)

)
ij
.

‘Operator mixing’ is really just the statement that correlation functions like 〈OiOj〉
are nonzero.
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9.3.3 Once more, with feeling (and an arbitrary number of components)

I’ve decided to skip this subsection in lecture. You may find it useful for the homework.

[Kardar, Fields, §5.5, 5.6] Let’s derive the RG for φ4 theory again, with a number

of improvements:

• Instead of two components, we’ll doN component fields, with U =
∫
dDxu0 (φaφa)2

(repeated indices are summed, a = 1..N).

• We’ll show that it’s not actually necessary to ever do any momentum integrals

to derive the RG equations.

• We’ll keep the mass perturbation in the discussion at each step; this lets us do

the following:

• We’ll show how to get the correlation length exponent without that annoying

discussion of composite operators. (Which was still worth doing because in other

contexts it is not avoidable.)

We’ll now assume O(N) symmetry, φa → Ra
bφ

b, with RtR = 1N×N , and perturb

about the gaussian fixed point with (euclidean) action

S0[φ] =

∫ Λ

0

d̄Dk φa(k)φa(−k)︸ ︷︷ ︸
≡|φ|2(k)

1

2

(
r0 + r2k

2
)
.

The coefficient r2 of the kinetic term is a book-keeping device that we may set to 1 if

we choose. Again we break up our fields into slow and fast, and integrate out the fast

modes:

ZΛ =

∫
[Dφ<]e

−
∫ Λ/s
0 d̄Dk|φ<(k)|2

(
r0+r2k

2

2

)
Z0,>

〈
e−U [φ<,φ>]

〉
0,>

.

Again the 〈...〉0,> means averaging over the fast modes with their Gaussian measure, and

Z0,> is an irrelevant normalization factor, independent of the objects of our fascination,

the slow modes φ<. With N components we do Wick contractions using〈
φa>(q1)φb>(q2)

〉
0,>

=
δab/δ(q1 + q2)

r0 + q2
1r2

.

I’ve defined /δ(q) ≡ (2π)DδD(q). Notice that we are now going to keep the mass

perturbation r0 in the discussion at each step. Again

log
〈
e−U
〉

0,>
= −〈U〉0,>︸ ︷︷ ︸

1

+
1

2

(〈
U2
〉

0,>
− 〈U〉20,>

)
︸ ︷︷ ︸

2
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1 = 〈U [φ<, φ>]〉0,> = u0

∫ 4∏
i=1

d̄Dki/δ(
∑
i

ki)

〈∏
i

(φ< + φ>)i

〉
0,>

Diagramatically, these 16 terms decompose as in Fig. 7.

Figure 7: 1st order corrections from the quartic perturbation of the Gaussian fixed point of the

O(N) model. Wiggly lines denote propagation of fast modes φ>, straight lines denote (external) slow

modes φ<. A further refinement of the notation is that we split apart the 4-point vertex to indicate

how the flavor indices are contracted; the dotted line denotes a direction in which no flavor flows,

i.e. it represents a coupling between the two flavor singlets, φaφa and φbφb. The numbers at left are

multiplicities with which these diagrams appear. (The relative factor of 2 between 13 and 14 can be

understood as arising from the fact that 13 has a symmetry which exchanges the fast lines but not

the slow lines, while 14 does not.) Notice that closed loops of the wiggly lines represent factors of N ,

since we must sum over which flavor is propagating in the loop – the flavor of a field running in a

closed loop is not determined by the external lines, just like the momentum.
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The interesting terms are

13 = −u0 2︸︷︷︸
symmetry

N︸︷︷︸
=δaa

∫ Λ/s

0

d̄Dk|φ<(k)|2
∫ Λ

Λ/s

d̄Dq
1

r0 + r2q2

14 =
4 · 1
2 ·N

13

has a bigger symmetry factor but no closed flavor index loop. The result through

O(u) is then

r0 → r0 + δr0 = r0 + 4u0(N + 2)

∫ Λ

Λ/s

d̄Dq
1

r0 + r2q2
+O(u2

0) .

r2 and u are unchanged. RG step ingredients 2 (rescaling: q̃ ≡ sq) and 3 (renormalizing:

φ̃ ≡ ζ−1φ<) allow us to restore the original action; we can choose ζ = s1+D/2 to keep

r̃2 = r2.

The second-order-in-u0 terms are displayed in Fig. 8. The interesting part of the

Figure 8: 2nd order corrections from the quartic perturbation of the Gaussian fixed point of the

O(N) model. Notice that the diagram at right has two closed flavor loops, and hence goes like N2,

and it comes with two powers of u0. You can convince yourself by drawing some diagrams that this

pattern continues at higher orders. If you wanted to define a model with large N you should therefore

consider taking a limit where N →∞, u0 → 0, holding u0N fixed. The quantity u0N is often called

the ’t Hooft coupling.

second order bit

2 =
1

2

〈
U [φ<, φ>]2

〉
0,>,connected

is the correction to U [φ<]. There are less interesting bits which are zero or constant

or two-loop corrections to the quadratic term. The correction to the quartic term at
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2nd order is

δ2S4[φ<] = u2
0(4N + 32)

∫ Λ/s

0

4∏
i

(
d̄Dkiφ<(ki)

)
/δ(
∑

ki)f(k1 + k2)

with

f(k1+k2) =

∫
d̄Dq

1

(r0 + r2q2)(r0 + r2(k1 + k2 − q)2)
'
∫

d̄Dq
1

(r0 + r2q2)2
(1 +O(k1 + k2))

– the bits that depend on the external momenta give irrelevant derivative corrections,

like φ2
<∂

2φ2
< . We ignore them.

The full result through O(u2
0) is then the original action, with the parameter re-

placement r2

r0

u0

 7→
r̃2

r̃0

ũ0

 =

s−D−2ζ2(r2 + δr2)

s−Dζ2(r0 + δr0)

s−3Dζ4 (u0 + δu0)

+O(u3
0).

The shifts are: 
δr2 = u2

0
∂2
kA(0)

r2

δr0 = 4u0(N + 2)
∫ Λ

Λ/s
d̄Dq 1

r0+r2q2 − A(0)u2
0

δu0 = −1
2
u2

0(8N + 64)
∫ Λ

Λ/s
d̄Dq 1

(r0+r2q2)2

.

Here A is the two-loop φ2 correction that we didn’t compute (it contains the leading

contribution to the wavefunction renormalization, A(k) = A(0) + 1
2
k2∂2

kA(0) + ...). We

can choose to keep r̃2 = r2 by setting

ζ2 =
sD+2

1 + u2
0∂

2
kA(0)/r2

= sD+2
(
1 +O(u2

0)
)
.

Now let’s make the RG step infinitesimal:

s = e` ' 1 + δ`{
dr0
d`

= 2r0 + 4(N+2)KDΛD

r0+r2Λ2 u0 − Au2
0 +O(u3

0)
du0

d`
= (4−D)u0 − 4(N+8)KDΛD

(r0+r2Λ2)2 u2
0 +O(u3

0)
(9.18)

I defined KD ≡ ΩD−1

(2π)D
.

To see how the previous thing arises, and how the integrals all went away, let’s

consider just the O(u0) correction to the mass:

r̃0 = r0 + δ`
dr0

d`
= s2

(
r0 + 4u(N + 2)

∫ Λ

Λ/s

d̄Dq

r0 + r2q2
+O(u2

0)

)
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= (1 + 2δ`)

(
r0 + 4u0(N + 2)

ΩD−1

(2π)D
ΛD 1

r0 + r2Λ2
δ`+O(u2

0)

)
=

(
2r0 +

4u0(N + 2)

r0 + r2Λ2
KDΛD

)
δ`+O(u2

0). (9.19)

Now we are home. (9.18) has two fixed points. One is the free fixed point at the

origin where nothing happens. The other (Wilson-Fisher) fixed point is at{
r?0 = −2u?0(N+2)KDΛD

r?0+r2Λ2

D=4−ε
= −1

2
N+2
N+8

r2Λ2ε+O(ε2)

u?0 = (r?+r2Λ2)2

4(N+8)KDΛD
ε

D=4−ε
= 1

4

r2
2

(N+8)K4
ε+O(ε2)

which is at positive u?0 if ε > 0. In the second step we keep only leading order in

ε = 4−D.

Figure 9: The φ4 phase diagram, for ε > 0.

Now we follow useful strategies for dynamical systems and linearize near the W-F

fixed point:
d

d`

(
δr0

δu0

)
= M

(
δr0

δu0

)
The matrix M is a 2x2 matrix whose eigenvalues describe the flows near the fixed

point. It looks like

M =

(
2− N+2

N+8
ε ...

O(ε2) −ε

)
Its eigenvalues (which don’t care about the off-diagonal terms because the lower left

entry is O(ε2) are

yr = 2− N + 2

N + 8
ε+O(ε2) > 0
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which determines the instability of the fixed point and

yu = −ε+O(ε2) < 0 for D < 4

which is a stable direction.

So yr determines the correlation length exponent. Its eigenvector is δr0 to O(ε2).

This makes sense: r0 is the relevant coupling which must be tuned to stay at the critical

point. The correlation length can be found as follows (as we did around Eq. (9.17)).

ξ is the value of s = s1 at which the relevant operator has turned on by an order-1

amount, i.e. by setting ξ ∼ s1 when 1 ∼ δr0(s1). According to the linearized RG

equation, close to the fixed point, we have δr0(s) = syrδr0(0). Therefore

ξ ∼ s
− 1
yr

1 = (δr0(0))−ν .

This last equality is the definition of the correlation length exponent (how does the

correlation length scale with our deviation from the critical point δr0(0)). Therefore

ν =
1

yr
=

(
2

(
1− 1

2

N + 2

N + 8
ε

))−1

+O(ε2) ' 1

2

(
1 +

N + 2

2(N + 8)
ε

)
+O(ε2).

The remarkable success of setting ε = 1 in this expansion to get answers for D = 3

continues. See the references for more details on this; for refinements of this estimate,

see Zinn-Justin’s book.
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9.4 Which bits of the beta function are universal?

[Cardy, chapter 5] Some of the information in the beta functions depends on our choice

of renormalization scheme and on our choice of regulator. Some of it does not: for

example, the topology of the fixed points, and the critical exponents associated with

them. Here is a way to see that some of the data in the beta functions is also universal.

It also gives a more general point of view on the epsilon expansion and why it works.

Operator product expansion (OPE). Suppose we want to understand a (vac-

uum) correlation function of local operators like

〈φi(x1)φj(x2)Φ〉

where {Φ} is a collection of other local operators at {rl}; suppose that the two operators

we’ve picked out are closer to each other than to any of the others:

|r1 − r2| � |r1,2 − rl|, ∀l.

Then from the point of view of the collection Φ, φiφj looks like a single local operator.

But which one? Well, it looks like some sum over all of them:

〈φi(x1)φj(x2)Φ〉 =
∑
k

Cijk(x1 − x2) 〈φk(x1)Φ〉

where {φk} is some basis of local operators. By Taylor expanding we can move all the

space-dependence of the operators to one point:

φ(x2) = e
(x2−x1)µ ∂

∂x
µ
1 φ(x1) = φ(x1) + (x2 − x1)µ∂µφ(x1) + · · · .

A shorthand for this collection of statements (for any Φ) is the OPE

φi(x1)φj(x2) ∼
∑
k

Cijk(x1 − x2)φk(x1)

which is to be understand as an operator equation: true for all states, but only up to

collisions with other operator insertions (hence the ∼ rather than =).

This is an attractive concept, but is useless unless we can find a good basis of local

operators. At a fixed point of the RG, it becomes much more useful, because of scale

invariance. This means that we can organize our operators according to their scaling

dimension. Roughly it means two wonderful simplifications:

• We can find a basis (here, for the simple case of scalar operators)

〈φi(x)φj(0)〉 =
δij
r2∆i

(9.20)

where ∆i is the scaling dimension of φi. Then we can order the contributions to∑
k by increasing ∆k, which means smaller contributions to 〈φφΦ〉.
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• Further, the form of Cijk is fixed up to a number. Again for scalar operators,

φi(x1)φj(x2) ∼
∑
k

cijk
|x1 − x2|∆i+∆j−∆k

φk(x1) (9.21)

where cijk is now a set of pure numbers, the OPE coefficients (or structure con-

stants).

The structure constants are universal data about the fixed point: they transcend

perturbation theory. How do I know this? Because they can be computed from

correlation functions of scaling operators at the fixed point: multiply the BHS of

(9.21) by φk(x3) and take the expectation value at the fixed point:

〈φi(x1)φj(x2)φk(x3)〉? =
∑
k′

cijk′

|x1 − x2|∆i+∆j−∆k
〈φk′(x1)φk(x3)〉

(9.20)
=

cijk
|x1 − x2|∆i+∆j−∆k

1

|x1 − x3|2∆k
(9.22)

(There is a better way to organize the RHS here, but let me not worry about

that here.) The point here is that by evaluating the LHS at the fixed point, with

some known positions x1,2,3, we can extract cijk.

Confession: I (and Cardy) have used a tiny little extra assumption of conformal

invariance to help constrain the situation here. It is difficult to have scale invariance

without conformal invariance, so this is not a big loss of generality. We can say more

about this next quarter but for now it is a distraction. [End of Lecture 37]

Conformal perturbation theory. I’ll make this discussion in the Euclidean

setting and we’ll think about the equilibrium partition function

Z = tre−H

– we set the temperature equal to 1 and include it in the couplings.

Suppose we find a fixed point of the RG, H?. (For example, it could be the gaussian

fixed point of N scalar fields.) Let us study its neighborhood. (For example, we could

seek out the nearby interacting Wilson-Fisher fixed point in D < 4 in this way.) Then

H = H? +
∑
x

∑
i

gia
∆iφi(x)

where a is the short distance cutoff (e.g. the lattice spacing), and φi has dimensions of

length−∆i as you can check from (9.20). So gi are de-dimensionalized couplings which

we will treat as small and expand in. Then

Z = Z?︸︷︷︸
≡tre−H?

〈
e−

∑
x

∑
i gia

∆iφi(x)
〉
?
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∑
x'

1

aD

∫
dDr

' Z?

(
1−

∑
i

gi

∫
〈φi(x)〉?

dDx

aD−∆i

+
1

2

∑
ij

gigj

∫
dDx1d

Dx2

a2D−∆i−∆j
〈φi(x1)φj(x2)〉?

− 1

3!

∑
ijk

gigjgk

∫ ∫ ∫ ∏3
a=1 d

Dxa
a3D−∆i−∆j−∆k

〈φi(x1)φj(x2)φk(x3)〉? + ...

)
.

Comments:

• We used the fact that near the fixed point, the correlation length is much larger

than the lattice spacing to replace
∑

x '
1
aD

∫
dDr.

• There is still a UV cutoff on all the integrals – the operators can’t get within a

lattice spacing of each other: |ri − rj| > a.

• The integrals over space are also IR divergent; we cut this off by putting the

whole story in a big box of size L. This is a physical size which should be

RG-independent.

• The structure of this expansion does not require the initial fixed point to be a

free fixed point; it merely requires us to be able to say something about the

correlation functions. As we will see, the OPE structure constants cijk are quite

enough to learn something.

Now let’s do the RG dance. While preserving Z, we make an infinitesimal change

of the cutoff:

a→ sa = (1 + δ`)a, δl� 1 .

The price for preserving Z is letting the couplings run gi = gi(s). Where does a appear?

(1) in the integration measure factors aD−∆i .

(2) in the cutoffs on
∫
dx1dx2 which enforce |x1 − x2| > a.

(3) not in the IR cutoff.

The leading-in-δ` effects of (1) and (2) are additive and so may be considered separately:

(1) g̃i = (1 + δ`)D−∆igi ' gi + (D −∆i)giδ` ≡ gi + δ1gi

The effect of (2) first appears in the O(g2) term, the change in which is

(2)
∑
i,j

gigj

∫
|x1−x2|∈(a(1+δ`),a)

∫
dDx1d

Dx2

a2D−∆i−∆j
〈φi(x1)φj(x2)〉?︸ ︷︷ ︸

=
∑
k cijk|x1−x2|∆k−∆i−∆j 〈φk〉?

=
∑
ij

gigjcijkΩD−1a
−2D+∆k 〈φk〉?
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So this correction can be absorbed by a change in gk according to

δ2gk = −1

2
ΩD−1

∑
ij

cijkgigj +O(g3)

where the O(g3) term comes from triple collisions which we haven’t considered here.

Therefore we arrive at the following expression for evolution of couplings: dg
d`

= (δ1g + δ2g) /δ`

dg

d`
= (D −∆k)gk −

1

2
Ωd

∑
ij

cijkgigj +O(g3) . (9.23)

37 At g = 0, the linearized solution is dgk/gk = (D −∆k)d` =⇒ gk ∼ e(D−∆k)` which

reproduces our understanding of relevant and irrelevant at the initial fixed point.

Let’s consider the Ising model.

H = −1

2

∑
x,x′

J(x− x′)S(x)S(x′)− h
∑
x

S(x)

' −1

2

∑
x,x′

J(x− x′)S(x)S(x′)− h
∑
x

φ(x) + λ
∑
x

(
S(x)2 − 1

)2

'
∫
dDx

(
1

2

(
~∇φ
)2

+ r0a
−2φ2 + u0a

D−4φ4 + ha−1−D/2φ

)
(9.24)

In the first step I wrote a lattice model of spins S = ±1; in the second step I used

the freedom imparted by universality to relax the S = ±1 constraint, and replace it

with a potential which merely discourages other values of S; in the final step we took

a continuum limit.

In (9.24) I’ve temporarily included a Zeeman-field term hS which breaks the φ →
−φ symmetry. Setting it to zero it stays zero (i.e. it will not be generated by the RG)

because of the symmetry. This situation is called technically natural.

Now, consider for example as our starting fixed point the Gaussian fixed point, with

H?,0 ∝
∫
dDx

1

2

(
~∇φ
)2

.

37 To make the preceding discussion we considered the partition function Z. If you look carefully

you will see that in fact it was not really necessary to take the expectation values 〈〉? to obtain the

result (9.23). Because the OPE is an operator equation, we can just consider the running of the

operator e−H and the calculation is identical. A reason you might consider doing this instead is that

expectation values of scaling operators on the plane actually vanish 〈φi(x)〉? = 0. However, if we

consider the partition function in finite volume (say on a torus of side length L), then the expectation

values of scaling operators are not zero. You can check these statements explicitly for the normal-

ordered operators at the gaussian fixed point introduced below. Thanks to Sridip Pal for bringing

these issues to my attention.
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Since this is quadratic in φ, all the correlation functions (and hence the OPEs, which

we’ll write below) are determined by Wick contractions using

〈φ(x1)φ(x2)〉?,0 =
N

|x1 − x2|D−2
.

It is convenient to rescale the couplings of the perturbing operators by gi → 2
ΩD−1

gi
to remove the annoying ΩD−1/2 factor from the beta function equation. Then the RG

equations (9.23) say 
dh
d`

= (1 +D/2)−
∑

ij cijhgigj
dr0
d`

= 2r0 −
∑

ij cijr0gigj
du0

d`
= εu0 −

∑
ij ciju0gigj

So we just need to know a few numbers, which we can compute by doing Wick con-

tractions with free fields. That is: to find the beta function for gk, we look at all the

OPEs between operators in the perturbed hamiltonian (9.24) which produce gk.

Algebra of scaling operators at the Gaussian fixed point. It is convenient

to choose a basis of normal-ordered operators, which are defined by subtracting out

their self-contractions. That is

φn ≡: φn := φn − (self-contractions)

so that 〈: φn :〉 = 0, and specifically

φ2 = φ2 −
〈
φ2
〉
, φ4 = φ4 − 3

〈
φ2
〉
φ2 .

This amounts to a shift in couplings r0 → r0 + 3u 〈φ2〉?. The benefit of this choice of

basis is that we can ignore any diagram where an operator is contracted with itself.

Note that the contractions 〈φ2〉 discussed here are defined on the plane. They are in

fact quite UV sensitive and require some short-distance cutoff.

To compute their OPEs, we consider a correlator of the form above:s

〈φn(x1)φm(x2)Φ〉

We do wick contractions with the free propagator,

but the form of the propagator doesn’t matter for

the beta function, only the combinatorial factors.

If we can contract all the operators making up φn

114



with those of φm, then what’s left looks like the

identity operator to Φ; that’s the leading term, if

it’s there, since the identity has dimension 0, the

lowest possible. More generally, some number of

φs will be left over and will need to be contracted

with bits of Φ to get a nonzero correlation func-

tion. For example, the contributions to φ2 · φ2 are depicted at right.

The part of the result we’ll need (if we set h = 0) can be written as (omitting the

implied factors of |x1 − x2|∆i+∆j−∆k necessary to restore dimensions):
φ2φ2 ∼ 21 + 4φ2 + φ4 + · · ·
φ2φ4 ∼ 12φ2 + 8φ4 + · · ·
φ4φ4 ∼ 241 + 96φ2 + 72φ4 + · · ·

At h = 0, the result is (the N = 1 case of the result in §9.3.3){
dr0
d`

= 2r0 − 4r2
0 − 2 · 12r0u0 − 96u2

0

du0

d`
= εu0 − r2

0 − 2 · 8r0u0 − 72u2
0

and so the (N = 1) WF fixed point occurs at u0 = u?0 = ε/72, r0 = O(ε2).

Linearizing the RG flow about the new fixed point,

dr0

d`
= 2r0 − 24u?0r0 + · · ·

gives
dr0

r0

= (2− 24

72
ε)d` =⇒ r0 ∼ e(2− 24

72
ε)` ≡

(
e`
) 1
ν

which gives ν = 1
2

+ 1
12
ε+O(ε2).
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10 Gauge theory

10.1 Massive vector fields as gauge fields

Consider a massive vector field Bµ with Lagrangian density

LB = −1

4
(dB)µν(dB)µν − 1

2
m2BµB

µ

where (dB)µν ≡ ∂µBν−∂νBµ. The mass term is not invariant under Bµ → Bµ+∂µλ, the

would-be gauge transformation. We can understand the connection between massive

vector fields and gauge theory by the ‘Stueckelberg trick’ of pretending that the gauge

parameter is a field: Let Bµ ≡ Aµ−∂µθ where θ is a new degree of freedom. Obviously,

any functional of B is now invariant under the transformation

Aµ(x)→ Aµ(x) + ∂µλ(x), θ(x)→ θ(x) + λ(x).

Notice that the fake new field θ transforms non-linearly (instead the transformation is

affine). This was just a book-keeping step, but something nice happens:

(dB)µν = ∂µAν − ∂νAµ = Fµν

is the field strength of A. The mass term becomes

BµB
µ = (Aµ − ∂µθ)(Aµ − ∂µθ).

This contains a kinetic term for θ. We can think of this term as (energetically) setting

θ equal to the longitudinal bit of the gauge field. If we couple a conserved current

(∂µjµ = 0) to B, then ∫
dDx jµB

µ =

∫
dDxjµA

µ

it is the same as coupling to Aµ. One nice thing about this reshuffling is that the

m→ 0 limit decouples the longitudinal bits.

Who is θ? Our previous point of view was that it is fake and we can just choose

the gauge parameter λ to get rid of it, and set θ(x) = 0. This is called unitary gauge,

and gives us back the Proca theory of B = A. Alternatively, consider the following

slightly bigger (more dofs) theory:

Lh ≡ −
1

4
FµνF

µν +
1

2
|Dµφ|2 + V (|φ|)

where φ is a scalar field of charge e whose covariant derivative is Dµφ = (∂µ − ieAµ)φ,

and let’s take

V (|φ|) = κ(|φ|2 − v2)2
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for some couplings κ, v. This is called an Abelian Higgs model. This potential has a

U(1) symmetry φ → eiαφ, and a circle of minima at |φ|2 = v2 (if v2 > 0 which we’ll

assume). In polar coordinates in field space, φ ≡ ρeiθ, the Lagrangian is

Lh = −1

4
FµνF

µν + ρ2(eAµ − ∂µθ)2 + (∂ρ)2 + V (ρ).

If we set e = 1, this differs from the action for B written in terms of A, θ only in the

addition of the Higgs mode ρ, whose mass (expanding V (ρ) about ρ = v) is

m2
ρ = 4κ2v2 κ�1

� m2
A = 〈ρ〉2 = v2.

That is: in the limit of large κ, the excitations of ρ are hard to make.

The description in terms of Lh is more useful than LB for thinking about the

renormalization of massive gauge fields: for example it is renormalizible, even if we

couple A to other charged fields (e.g. Dirac fermions). It is also a description of what

happens to the EM field in a superconductor: it gets a mass; the resulting expulsion

of magnetic flux is called the Meissner effect. For example, if we immerse a region

x > 0 with φ = v in an external constant magnetic field B0, 0 = ∂µF
µν −m2Aν =⇒

B(x) = Be−x/m. Another consequence of the mass is that if we do manage to sneak

some magnetic flux into superconductor, the flux lines will bunch up into a localized

string, as you’ll show on the homework. This is called a vortex (or vortex string in 3d)

because of what φ does in this configuration: its phase winds around the defect. In

a superconductor, the role of φ is played by the Cooper pair field (which has electric

charge two). On the homework, you’ll see a consequence of the charge of φ for the flux

quantization of vortices. We will say more about its origins in terms of electrons next

quarter.

I mention here the Meissner effect and the resulting collimation of flux lines partly

because it will be helpful for developing a picture of confinement. In particular: think

about the energetics of a magnetic monopole (suppose we had one available) in a

superconductor. If we try to insert it into a superconductor, it will trail behind it

a vortex string. If we make the superconducting region larger and larger, its energy

grows linearly in the size – it is not a finite energy object in the thermodynamic limit.

If monopoles were dynamical excitations of rest mass Mm, it would eventually become

energetically favorable to pop an antimonopole out of the vacuum, so that the flux

string connects the monopole to the antimonopole – this object can have finite energy

inside the superconductor.
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10.2 Festival of gauge invariance

Consider a collection of N complex scalar fields (we could just as well consider spinors)

with, for definiteness, a gaussian action

L =
N∑
α=1

∂µφ
?
α∂

µφα − V (φ?αφα) (10.1)

(or L = Ψ̄α∂µΨα). The first term is just like the O(2N) generalization of the Wilson-

Fisher theory, except that for kicks I grouped the scalars into pairs, and made the

potential of the combination
∑N

α=1 φ
?
αφα.

Lighting review of Lie groups and Lie algebras. (10.1) is invariant under the

U(N) transformation

φα 7→ Λαβφβ, Λ†Λ = 1. (10.2)

Any such U(N) matrix Λ can be parametrized as

Λ = Λ(λ) = ei
∑N2−1
A=1 λATAeiλ

0

as we saw on the homework last quarter. λ0 parametrizes a U(1) factor which commutes

with everyone; we already know something about U(1) gauge theory from QED, so we

won’t focus on that. We’ll focus on the non-abelian part: the TA are the generators of

SU(N), and are traceless, so SU(N) 3 Λ(λ0 = 0) has trΛ(λ0 = 0) = 0. Here the index

A = 1 : N2 − 1 = dim(SU(N)); the matrices TA (and hence also Λ) are N × N , and

satisfy the Lie algebra relations

[TA, TB] = ifABCT
C (10.3)

where fABC are the structure constants of the algebra. For the case of SU(2), TA =
1
2
σA, A = 1, 2, 3, and fABC = εABC . The infinitesimal version of (10.2), with Λ close to

the identity, is

φα 7→ φα + iλATAabφB.

Other representations of the group come from other sets of TAR s which satisfy the

same algebra (10.3), but can have other dimensions. For example, the structure con-

stants themselves
(
TBadj

)
AC
≡ −ifABC furnish the representation matrices for the ad-

joint representation.

Local invariance. The transformation above was global in the sense that the

parameter λ was independent of spacetime. This is an actual symmetry of the physical

system associated with (10.1). Let’s consider how we might change the model in (10.1)
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to make it invariant under a local transformation, with λ = λ(x). In the Abelian case,

we have learned

φ 7→ eiλ(x)φ(x), Aµ 7→ Aµ + ∂µλ, ∂µφ Dµφ = (∂µ − iAµ)φ 7→ eiλ(x)Dµφ.

By replacing partial derivatives with covariant derivatives, we can make gauge-invariant

Lagrangians. The same thing works in the non-abelian case:

(Dµφ)α ≡ ∂µφα − iAATAαβφβ

φ 7→ φ+ iλA(x)TAφ, AAµ 7→ AAµ + ∂µλ
A − fABCλBACµ (x).

The difference is that there is a term depending on A in the shift of the gauge field A.

The following Yang-Mills Lagrangian density is a natural generalization of Maxwell:

LYM = − 1

4g2

∑
A

∂µAAν − ∂νAAµ + fABCA
B
µA

C
ν︸ ︷︷ ︸

=FAµν=−FAνµ


2

= − 1

4g2
trFµνF

µν . (10.4)

The field strength

FA
µν 7→ FA

µν + fABCλ
BFC

µν = FA
µν + iλB

(
TBadj

)
AC

FC
µν

is designed so that it transforms in the adjoint representation, and therefore SYM is

gauge-invariant.

[End of Lecture 38]

Gauge fields as connections. The preceding formulae are not too hard to ver-

ify, but where did they come from? Suppose we wanted to attach an N -dimensional

complex vector space to each point in spacetime; on each vector space we have an

action of SU(N), by φα(x) 7→ Λαβ(x)φ(x). Suppose we would like to do physics in

a way which is independent of the choice of basis for this space, at each point. We

would like to be able to compare φ(x) and φ(y) (For example to make kinetic energy

terms) in a way which respects these independent rotations. To do this, we need more

structure: we need a connection (or comparator) Wxy, an object which transforms like

Wxy 7→ Λ(x)†WxyΛ(y), so that φ†(x)Wxyφ(y) is invariant. The connection between

two points Wxy may depend on how we get from x to y. We demand that W (∅) = 1,

W (C2 ◦ C1) = W (C2)W (C1) and W (−C) = W−1(C), where −C is the path C taken

in the opposite direction.

But if we have a Wxy for any two points, you can’t stop me from considering nearby

points and defining

Dµφ(x) ≡ lim
∆x→0

W (x, x+ ∆x)φ(x+ ∆x)− φ(x)

∆xµ
7→ U(x)Dµφ(x) . (10.5)
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Expanding near ∆x→ 0, we can let

W (x, x+ ∆x) = 1 − ie∆xµAµ(x) +O(∆x2) (10.6)

this defines the gauge field Aµ (sometimes also called the connection). To make the

gauge transformation of the non-abelian connection field A 7→ AΛ obvious, just remem-

ber that DAΛ

µ (Λφ)
!

= Λ
(
DA
µφ
)

which means AΛ
µ = ΛAµΛ−1− (∂µΛ) Λ−1. (This formula

also works in the abelian case Λ = eiλ, and knows about the global structure of the

group λ ' λ+ 2π.)

The equation (10.6) can be integrated: Wxy = e
−ie

∫
Cxy

Aµ(x̃)dx̃µ
where Cxy is a path

in spacetime from x to y. What if G is not abelian? Then I need to tell you the ordering

in the exponent. We know from Dyson’s equation that the solution is

Wxy = Pe−ie
∫
Cxy

Aµ(x̃)dx̃µ

where P indicates path-ordering along the path Cxy, just like the time-ordered expo-

nential we encountered in interaction-picture perturbation theory.

To what extent does Wxy depend on the path? In the abelian case,

WC = WC′e
ie
∮
C−C′ A

Stokes
= WC′e

ie
∫
R Fµνdx

µdxν

where ∂R = C − C ′ is a 2d surface whose boundary is the difference of paths. 38

Imagine inserting an infinitesimal rectangle to the path which moves by dxµ then by

dxν and then back and back. The difference in the action on φ is

dxµdxν [Dµ, Dν ]φ = −iedxµdxνFµνφ.

The commutator of covariant derivatives is not an operator, but a function [Dµ, Dν ] =

−ieFµν . This same relation holds in the non-abelian case:

Fµν =
i

e
[Dµ, Dν ] = ∂µAν − ∂νAµ − ie[Aµ, Aν ].

This object is Lie-algebra-valued, so can be expanded in a basis: Fµν = FA
µνT

A, so

more explicitly,

FA
µν = ∂µA

A
ν − ∂νAAµ − iefABCA

B
µA

C
ν .

38Which 2d surface? Let me speak about the abelian case for the rest of this footnote. The difference

in phase between two possible choices is eie
∫
R−R′ F

Stokes
= eie

∫
V
dF where ∂V = R−R′ is the 3-volume

whose boundary is the difference of the two regions. The integrand vanishes by the Bianchi identity,

which is an identity if F = dA. You might think this prevents magnetic sources. But actually
∫
V
dF

only appears in e
∫
V
dF , so magnetic sources are perfectly consistent with independence of the choice

of R, as long as their charge q ≡
∫
V
dF =

∮
∂V

F is quantized ge ∈ 2πZ. This is Dirac quantization.
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Since it is made from products of covariant derivatives, [D,D]φ 7→ Λ[D,D]φ, it must

transform in the adjoint representation, F 7→ Λ†FΛ, or in infinitesimal form

FA
µν 7→ FA

µν − fABCλBFC
µν .

Actions for gauge fields. The Yang-Mills (YM) action (10.4) is a gauge invariant

and Lorentz invariant local functional of A. If the gauge field is to appear in D = ∂+A

it must have the same dimension as ∂, so LYM has naive scaling dimension 4, like the

Maxwell term, so it is marginal in D = 4. Notice that unlike the Maxwell term, LYM is

not quadratic in A: it contains cubic and quartic terms in A, whose form is determined

by the gauge algebra fABC .

In even spacetime dimensions, another gauge invariant, Lorentz invariant local func-

tional of A is the total-derivative term Sθ = θ
∫

F
2π
∧ ... ∧ F

2π
with D/2 factors of F .

(By ∧ I mean antisymmetrize all the indices.) This doesn’t affect the equations of

motion or perturbation theory (e.g. in D = 4, εµνρσFA
µνF

A
ρσ = 2∂µ

(
εµνρσAAν F

A
ρσ

)
) but

does matter non-perturbatively. We’ll see next quarter that for smooth gauge field

configurations in a closed spacetime, this functional is an integer. This coupling of the

gluons is constrained to be very small because it would give an electric dipole moment

to the neutron, which the neutron doesn’t seem to have; this mystery is called the

strong CP problem because this coupling θ violates CP symmetry.

In odd spacetime dimensions, we should consider the Chern-Simons term (the D =

2 + 1 version of which we just encountered)
∫
A ∧ F

2π
∧ ... ∧ F

2π
with (D − 1)/2 factors

of F . This term does affect the equations of motion. It breaks parity symmetry. It

is important in quantum Hall physics in D = 2 + 1, where it gives the gauge field

fluctuations a mass.

In general dimension, we can make more couplings out of just A if we take more

derivatives, but they will have higher dimension.

We can couple YM gauge fields to matter by returning to our starting point: e.g. if

ψ(x) 7→ ΛRψ(x) is a Dirac field transforming in some representation R of the gauge

group, then Dµψ =
(
∂µ − iTARA

A
µ

)
ψ also transforms in representation R, so

ψ̄Dµψ + V (ψ̄ψ)

is a gauge-invariant lagrangian density. The lowest-dimension couplings of A to matter

are determined by the representation matrices TAR , which generalize the electric charge.

You might expect that we would starting doing perturbation theory in g now.

There is lots of physics there, but it takes a little while to get there. In the small

time left in this quarter, we will instead think about how we might define the thing

non-perturbatively and see what we learn from that.
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10.3 Lattice gauge theory

The following beautiful construction was found by Wegner and Wilson and Polyakov;

a good review is this one by Kogut.

Consider discretizing euclidean spacetime into a hypercubic lattice (for simplicity).

On each link xy of the lattice we place a G-valued matrix Uab
xy. We demand that

Uyx = U−1
xy . Three good examples to keep in mind (in decreasing order of difficulty)

are:

1. G = U(N), in which case each U is a complex N ×N matrix with UU † = 1.

2. G = U(1), in which case U is a phase, Uxy = eiθxy , θxy ∈ [0, 2π).

3. G = Zn, in which case U = e2πi`/n, ` = 1, · · ·n, is a phase with Un = 1. For

n = 2, this is a classical spin.

Please think of Uxy = Pei
∫ y
x Aµ(r)drµ as the Wilson line along the link (except that

there is no such thing as Aµ(r) at other values of r). As such, we impose the gauge

equivalence relation Uxy 7→ g†xUxygy, where gx ∈ G for each x. We will accomplish this

by two steps: by writing an action S[U ] which has this invariance, and by integrating

over {U} with an invariant measure:

Z =

∫ ∏
`

dU`e
−S[U ].

Here
∫
dU is the G-invariant (Haar) measure on G, which can be defined by the desider-

ata ∫
G

dU = 1,

∫
G

dUf(U) =

∫
G

dUf(V U) =

∫
G

dUf(UV ),∀V ∈ G .

For G = U(1), it is just
∫ 2π

0
dϕ; for G = Zn, it just

∑n
`=1. You can figure out what it is

for SU(2) (locally, it’s the round measure on S3). Notice the following lovely advantage

of these conditions: there is no need to gauge fix anything.

This is a statistical mechanics problem of the thermodynamics of a bunch of classical

rotors (slightly fancy ones in the SU(N) case). The review by Kogut does a great job

of highlighting the fact that this class of problems is susceptible to all the tools of

statistical mechanics.

What action should we use? Here is a good way to make something invariant under

the gauge group: Consider the comparator for a closed path Cxx which starts at x and

ends at x:

W (Cxx) = Pei
∫
Cxx

A.
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How does this transform? W (Cxx) 7→ g−1
x W (Cxx)gx, but, for non-abelian G, it’s still a

matrix! A gauge-invariant object is

W (C) ≡ trW (Cxx) = trPei
∫
Cxx

A

where the gx and g−1
x can eat each other by cylicity of the trace. We can make something

gauge invariant and as local as possible by considering a path C which goes around a

single plaquette of the lattice: C = ∂2. This is Wilson’s action:

S[U ] =
1

2f 2

∑
2

S2, S2 = Retr
∏
`∈∂2

U = Retr (Ux,x+dxUx+dx,x+dx+dyUx+dx+dy,x+dyUx+dy,x) .

Now let’s think seriously about the G = SU(N) case, and take seriously the idea

that Ux,x+dx = e−i
∫ x+dx
x Aµdxµ , where Aµ(x) is an element of the Lie algebra su(N).

An application of the CBH39 formula esAesB = esA+sB+ s2

2
[A,B]+O(s3) shows that for a

plaquette oriented in the µν plane 2µν , with lattice spacing a,

S2µν
CBH
= Retr

(
e
i a2
√

2g2
Fµν +O(a3)

)
= Retr

(
1 + i

a2

√
2g2

Fµν −
1

2

a4

4g2
FµνFµν +O(a5)

)
= tr1 − a4

4g4
trFµνFµν + ... = LYM(2) + const.

The coupling g is related to f in some way that can be figured out. So it is plausible

that this model has a continuum limit governed by the Yang-Mills action. Realizing

this possibility requires that the model defined by Z have a correlation length much

larger than the lattice spacing, which is a physics question.

Before examining the partition sum, how would we add charged matter? If we

place fundamentals qx 7→ gxqx at each site, we can make gauge invariants of the form

q†xUxyUyzUzwqw, or most simply, we can make a kinetic term for q by

Sq =
1

a#

∑
x,`

q†xUx,x+`qx+` '
∫
dDx q†(x)

(
/D −m

)
q(x) + ...

where Dµ = ∂µ− iAµ is the covariant derivative, and we used its definition (10.5). The

expression I’ve written is for a grassmann, spinor field; for bosonic fields the second-

order terms are the leading terms which aren’t a total derivative. There is some drama

about the number of components of the spinor field one gets. It is not hard to get a

massive Dirac fermion charged under a U(1) gauge field, like in QED. It is impossible

39Charlie-Baker-Hotel
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to get a chiral spectrum, like a single Weyl fermion, from a gaussian, local lattice

action; this is called the Nielsen-Ninomiya theorem. You might think ‘oh that’s not a

problem, because in the Standard Model there is the same number of L and R Weyl

fermions,’ but it is still a problem because they carry different representations under

the electroweak gauge group. The word ‘gaussian’ is a real loophole, but not an easy

one.

How do we get physics from the lattice gauge theory path integral Z? We need to

find some gauge-invariant observables (since anything we stick in the integrand that

isn’t gauge-invariant will average to zero). In the pure YM theory, a good one is

our friend the Wilson loop W (C) = tr
(∏

`∈C U`
)
' trPei

∮
C A. What physics does it

encode? Recall what happened when we added an external source to measure the force

mediated by various fields, for example in the Maxwell theory:

lim
T→∞

Z−1

∫
DA eiSMaxwell[A]+i

∫
AµJµ = e−iV (R)T .

Here we took Jµ(x) = ηµ0
(
δd(~x)− δd(~x− (R, 0, 0))

)
for t in an interval of duration T ,

and zero before and after, two charges are held at distance R for a time T . V (R) is the

energy of the resulting configuration of (here, electromagnetic) fields, i.e.the Coulomb

potential. If instead we let the charge and anticharge annihilate at t = 0 and t = T ,

this is a single charge moving along a rectangular loop CR×T in spacetime, with sides

R and T , and

〈W (CR×T )〉 T�R' e−iV (R)T ,

where the LHS is a gauge invariant operator. There can be some funny business

associated with the corners and the spacelike segments, and this is the reason that we

look for the bit of the free energy which is extensive in T .

In the case of the Maxwell theory in the continuum, this is a gaussian integral,

which we can do (see the homework), and log
〈
e
i
∮
CR×T

A
〉
' −iE(R)T + f(T )R with

E(R) ∼ 1
R

, goes something like the perimeter of the loop C. In the case of a short-

ranged interaction, from a massive gauge field, the perimeter law would be more literally

satisfied.

In contrast, a confining force between the charges would obtain if

〈W (CR×T )〉 = Z−1

∫ ∏
dU e

− 1
2f2

∑
2 ReS2W (CR×T )

T�R' e−iV (R)T

with

V (R) = σR =⇒ F = −∂V
∂R

= −σ .

This is a distance-independent attractive force between the charges. In this case

log 〈W 〉 ∼ RT goes like the area of the (inside of the) loop, so confinement is as-

sociated with an area law for Wilson loops. A constant force means a linear potential,
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so it is as if the charges are connected by a string of constant tension (energy per unit

length) σ.

A small warning about the area law: in general, the existence of an area law may

depend on the representation in which we put the external charges:

W (C,R) = trRPei
∮
C A

ATAR

where TAR are the generators of G in some representation R; this is the phase associated

with a (very heavy and hence non-dynamical) particle in representation R. For some

choices of R, it might be possible and energetically favorable for the vacuum to pop

out dynamical charges which then screen the force between the two external charges

(by forming singlets with them). G = SU(N) has a center ZN ⊂ SU(N) under which

the adjoint is neutral, so a Wilson loop in a representation carrying ZN charge (such as

the fundamental, in which it acts by ZN phases times the identity) cannot be screened

by pure glue. QCD, which has dynamical fundamentals is more subtle.

This point, however, motivates the study of the dynamics of abelian lattice gauge

theories to address the present question.

Where might such an area law come from? I’ll give two hints for how to think

about it.

Hint 1: Strong coupling expansion. In thinking about an integral over the

form ∫
DU eβ

∑
2 S2W (C)

it is hard to resist trying to expand the exponential in β.

Unlike the perturbation series we’ve been talking about for months, this series

has a finite radius of convergence. To understand this, it is useful to recognize that

this expansion is structurally identical to the high-temperature expansion of a thermal

partition function. For each configuration C, the function e−βh(C) is analytic in β about

β = 0 (notice that e−
1
T is analytic about T =∞!). The only way to get a singularity at

β = 0 would be if the sum over configurations (in the thermodynamic limit) did it; this

would be a phase transition at T = ∞; that doesn’t happen because the correlation

length inevitably goes to zero at T =∞: every site is so busy being buffeted by thermal

fluctuations that it doesn’t care about the other sites at all.40

In the non-abelian case, we get to do all kinds of fun stuff with characters of the

group. For simplicity, let’s focus on an abelian example, which will have a similar

40For a much more formal and, I think, less illuminating proof, see for example J-M Drouffe and

J-B Zuber, Physics Reports 102 (1983) section 3.1.2. Thanks to Tarun Grover for framing the above

argument.
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structure (though different large-β (weak coupling) physics). So take U` = eiθ` ∈ U(1),

in which case

S2µν [U ] = − (1− cos θµν) , θµν(x) = θµ(x+ν)−θµ(x)−θν(x+µ)+θν(x) ≡ ∆νθµ−∆µθν(x).

First let’s consider the case where the world is a single plaquette. Then

〈W (2)〉 =

∫ ∏
`

dU` U1U2U3U4

(
1 + β(S2 + S†2) +

1

2
β2
(
S + S†

)2
+

1

3!
β3
(
S + S†

)3
+ · · ·

)
= β 〈S2S−2〉︸ ︷︷ ︸

=1

+
β3

2
〈S22S−22〉+O(β5) = βA(2)

(
1 +O(β2)

)
= e−f(β)Area (10.7)

with f(β) = | ln β| in this crude approximation. Here the area of the loop was just 1.

I’ve written S22 = S2
2, which is only true in abelian cases. If instead we consider a

loop which encloses many plaquettes, we must pull down at least one factor of βS†2 for

each plaquette, in order to cancel the link factors in the integrand. We can get more

factors of beta if we pull down more cancelling pairs of βnSn2S
n
−2, but these terms are

subleading at small β. The leading contribution is 〈W (C)〉 = e−f(β)Area (1 +O(β2)),

an area law.

Since the series converges, this conclusion can be made completely rigorous. In

what sense is confinement a mystery then? Well, a hint is that our argument applies

equally well (and in fact the calculation we did was) for abelian gauge theory! But

QED doesn’t confine – we calculated the Wilson loop at weak coupling and found a

perimeter law – what gives? The answer is that there is a phase transition in between

weak and strong coupling, so weak coupling is not an analytic continuation of the

strong coupling series answer. Ruling out this possibility in Yang-Mills theory would

be lucrative.

In fact, though, the Wilson loop expectation itself can exhibit a phase transition,

even if other observables don’t. I’ve drawn the pictures above as if the world were two-

dimensional, in which case we just cover every plaquette inside the loop. In D > 2, we

have to choose a surface whose boundary is the loop. Rather, 〈W 〉 is a statistical sum

over such surfaces, weighted by βarea. Such surface models often exhibit a roughening

transition as β becomes larger and floppy surfaces are not suppressed.

By the way, the same technology can be used to study the spectrum of excitations

of the gauge theory, by considering correlations like〈
SR(t)S†R(0)

〉
c

=
∑
α

|cRα |2e−mα(R)t

where SR is the trace of a Wilson loop in representation R, around a single plaquette,

and the two loops in question are separated only in time and are parallel. The subscript
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c means connected. The right hand side is a sum over intermediate, gauge invariant

states with the right quantum numbers, and mα(R) are their masses. This is obtained

by inserting a complete set of energy eigenstates. In strong coupling expansion, we

get a sum over discretized tubes of plaquettes, with one boundary at each loop (the

connected condition prevents disconnected surfaces), the minimal number of plaquettes

for a hypercubic lattice is 4t+ 2, giving〈
SR(t)S†R(0)

〉
c
∼ Aβ4t

(
1 +O(β2)

)
and the smallest glueball mass becomes m0 ∼ 4| ln β|, similar to the scale of the

string tension. Actually, the corrections exponentiate to give something of the form

m0(R) = −4 ln β +
∑

kmk(R)βk.

Hint 2: monopole condensation and dual Meissner effect.

[Banks’ book has a very nice discussion of this.] Recall that a single magnetic

monopole is not a finite energy situation inside an infinite superconductor, because it

has a tensionful Abrikosov flux string attached to it. A monopole and an antimonopole

are linearly confined, with a constant force equal to the string tension.

On the other hand, electric-magnetic duality is a familiar invariance of Maxwell’s

equations:

∂µFµν = J (e)
ν , ∂µF̃µν = J (m)

ν (10.8)

is invariant under the replacements

Fµν → F̃µν ≡
1

2
εµνρσF

ρσ, J (e)
ν → J (m)

ν .

In doing a weak-coupling expansion (e.g. as we did in QED), we make a choice (having

not seen magnetic charges, they must be heavy) to solve the second equation of (10.8)

by introducing a smooth vector potential Aµ via

Fµν(x) = ∂µAν − ∂νAµ +
1

2
εµνρσ

∫
d4yJ (m)(y)σfρ(x− y)

with ∂ρf
ρ(x) = δ4(x). Here we are treating the magnetic sources as fixed, e.g. because

they are heavy. The support of the function fρ is called the Dirac string. A monopole

is placed at the end of an long and infinitely thin solenoid, which is invisible classically.

Quantumly, it could be detected by Aharonov-Bohm effect of a charged particle going

around it ei
∫
B = ei

∮
A = eieg unless eg ∈ 2πZ, Dirac quantization again. (For particles

with electric and magnetic charge (dyons), the condition is q1m2 − q2m1 ∈ 2πZ.)

So, the duality interchanges e and m. So, if condensation of electric charge (meaning

〈Φ〉 = v for some electrically charged field Φ) means that Aµ is massive (Higgs effect)
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and that monopoles are confined by tensionful magnetic flux tubes, then we can just

replace the relevant words to learn that: Condensation of magnetic charge 〈Φm〉 6= 0

means that some dual photon (Ãµ with dÃ = F̃ ) is massive, and that electric charges

are linearly confined by tensionful electric flux tubes.

This was pointed out by Mandelstam and ’t Hooft in 1974. In 1994 Seiberg and Wit-

ten (hep-th/9407087) showed in detail that this happens in a highly supersymmetric

example. In abelian lattice models, we can actually implement the duality transforma-

tion explicitly by various path integral tricks. One path through this story (found in

1978 by Banks, Myerson, Kogut and also Peskin) is described in Banks’ book. Along

the way, one encounters dualities with many familiar statistical mechanical models,

such as our friend the XY model. I hope we will come back to this next quarter.
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