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Due 11am Tuesday, March 21, 2017

This problem set may grow a little bit. It is the last problem set for the quarter.

1. Abrikosov-Nielsen-Oleson vortex string.

Consider the Abelian Higgs model in D = 3 + 1:

Lh ≡ −
1

4
FµνF

µν +
1

2
|Dµφ|2 − V (|φ|)

where φ is a scalar field of charge e whose covariant derivative isDµφ = (∂µ − iqAµ)φ,

and let’s take

V (|φ|) =
κ

2
(|φ|2 − v2)2

for some couplings κ, v. Here we are going to do some interesting classical field

theory. Set q = 1 for a bit.

(a) Consider a configuration which is independent of x3, one of the spatial co-

ordinates, and static (independent of time). Show that its energy density

(energy per unit length in x3) is

U =

∫
d2x

(
1

2
F 2
12 +

1

2
|Diφ|2 + V (|φ|)

)
.

(b) Consider the special case where κ = 1. Assuming that the integrand falls

off sufficiently quickly at large x1,2, show that

Uκ=1 =

∫
d2x

(
1

2

(
F12 + |φ|2 − v2

)2
+

1

4
|Diφ+ iεijDjφ|2 + v2F12 −

1

2
iεk`∂k (φ?D`φ)

)
.

(c) The first two terms in the energy density of the previous part are squares and

hence manifestly positive, so setting to zero the things being squared will

minimize the energy density. Show that the resulting first-order equations

(they are called BPS equations after people with those initials, Bogolmonyi,

Prasad, Sommerfeld)

0 = (Di + iεijDj)φ, F12 = −|φ|2 + v2
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are solved by (x1 + ix2 ≡ reiϕ)

φ = einϕf(r), A1 + iA2 = −ieiϕa(r)− n
r

if

f ′ =
a

r
f, a′ = r2(f 2 − v2)

with boundary conditions

a→ 0, f → v +O
(
e−mr

)
, at r →∞ (1)

a→ n+O(r2), f → rn(1 +O(r2)), at r → 0.

(For other values of κ, the story is not as simple, but there is a solution

with the same qualitative properties. See for example §3.3 of E. Weinberg,

Classical solutions in Quantum Field Theory.)

(d) The second BPS equation and (1) imply that all the action (in particular

F12) is localized near r = 0. Evaluate the magnetic flux through the x1−x2
plane, Φ ≡

∫
B ·da in the vortex configuration labelled by n. Show that the

energy density is U = v2

2
· Φ.

(e) Show that the previous result for the flux follows from demanding that the

two terms in Diφ cancel at large r so that

Diφ
r→∞→ 0 (2)

faster than 1/r. Solve (2) for Ai in terms of φ and integrate
∫
d2xF12.

(f) Argue that a single vortex (string) in the ungauged theory (with global U(1)

symmetry)

L = |∂φ|2 + V (|φ|)
does not have finite energy (density). By a vortex, I mean a configuration

where φ
r→∞→ veiϕ, where x1 + ix2 = reiϕ.

(g) Consider now the case where the scalar field has charge q. Show that the

magnetic flux in the core of the minimal (n = 1) vortex is now (restoring

units) hc
qe

.

2. BPS conditions from supersymmetry. [bonus!] What’s special about κ = 1?

For one thing, it is the boundary between type I and type II superconductors.

More sharply, it means the mass of the scalar equals the mass of the vector,

at least classically. Moreover, in the presence of some extra fermionic fields,

the model with this coupling has an additional symmetry mixing bosons and

fermions, namely supersymmetry. This symmetry underlies the special features

we found above. Here is an outline (you can do some parts without doing others)

of how this works. Please do not trust my numerical factors.
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(a) Add to Lh a charged fermion Ψ (partner of φ) and a neutral Majorana

fermion λ (partner of Aµ):

Lf =
1

2
iΨ̄ /DΨ + iλ̄ /Dλ+ λ̄Ψφ+ h.c..

Consider the transformation rules

δεAµ = iε̄γµλ, δεΨ = Dµφγ
µε, δεφ = −iε̄Ψ, δελ = −1

2
iσµνFµνε+ i(|φ|2 − v)ε

where the transformation parameter ε is a Majorana spinor (and a grass-

mann variable). Show that (something like this) is a symmetry of L =

Lh + Lf . This is N = 1 supersymmetry in D = 4.

(b) Show that the conserved charges associated with these transformations Qα

(they are grassmann objects and spinors, since they generate the transfor-

mations, via δεfields = [εαQα + h.c., fields]), satisfy the algebra

{Q, Q̄} = 2γµPµ + 2γµΣµ (3)

where Pµ is the usual generator of spacetime translations and Σµ is the vortex

string charge, which is nonzero in a state with a vortex string stretching in

the µ direction. Q̄ ≡ Q†γ0 as usual.

(c) If we multiply (3) on the right by γ0, we get the positive operator {Qα, Q
†
β}.

This operator annihilates states which satisfy Q |BPS〉 = 0 for some com-

ponents of Q. Such a state is therefore invariant under some subgroup of

the superymmetry, and is called a BPS state. Now look at the right hand

side of (3)×γ0 in a configuration where Σ3 = πnv2 and show that its energy

density is E ≥ π|n|v2, with the inequality saturated only for BPS states.

(d) To find BPS configurations, we can simply set to zero the relevant supersym-

metry variations of the fields. Since we are going to get rid of the fermion

fields anyway, we can set them to zero and consider just the (bosonic) vari-

ations of the fermionic fields. Show that this reproduces the BPS equations.

3. Gauge theory can emerge from a local Hilbert space.

The Hilbert space of a gauge theory is a funny thing: states related by a gauge

transformation are physically equivalent. In particular, it is not a tensor product

over independent local Hilbert spaces associated with regions of space. Because of

this, there is much hand-wringing about defining entanglement in gauge theory.

The following is helpful for thinking about this. It is a realization of Z2 lattice

gauge theory, beginning from a model with no redundancy in its Hilbert space.

In this avatar it is due to Kitaev and is called the toric code.
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To define the Hilbert space, put a qbit on every link ` of a lattice, say the 2d

square lattice, so that H = ⊗`H`. Let σx` , σ
z
` be the associated Pauli operators,

and recall that {σx` , σz`} = 0. H` = span{|σz` = 1〉 , |σz` = −1〉} is a useful basis

for the Hilbert space of a single link.

One term in the hamiltonian is associated with each site j → Aj ≡∏
l∈j σ

z
l and one with each plaquette p→ Bp ≡

∏
l∈∂p σ

x
l , as indicated

in the figure at right.

H = −Γe
∑
j

Aj − Γm
∑
p

Bp.

(a) Show that all these terms commute with each other.

(b) The previous result means we can diagonalize the Hamiltonian by minimiz-

ing one term at a time. Let’s imagine that Γe � Γm so we’ll minimize the

‘star’ terms Aj first. Which states satisfy the ‘star condition’ Aj = 1? In

the σx basis there is an extremely useful visualization: we say a link l of

Γ̂ is covered with a segment of string (an electric flux line) if σxl = −1 (so

the electric field on the link is el = 1) and is not covered if σxl = +1 (so

the electric field on the link is el = 0): ≡ (σz` = −1). Draw all possi-

ble configurations incident on a single vertex j and characterize which ones

satisfy Aj = 1.

(c) [bonus] What is the effect of adding a term ∆H =
∑

` gσ
x? Convince your-

self that in the limit Γe � Γm, for energies E � Γe, this is identical to Z2

lattice gauge theory, where Aj = 1 is a discrete version of the Gauss law

constraint. [This part is a bonus problem because I have not yet explained

how to go from the euclidean lattice gauge theory to a Hamiltonian formu-

lation. If you want to figure it out yourself, you can get help from section

V.E of this Kogut review.]

(d) [bonus] Set g = 0 again. In the subspace of solutions of the star condi-

tion, find the groundstate(s) of the plaquette term. First consider a simply-

connected region of lattice, then consider periodic boundary conditions.

4. Brain-cooler.

(a) Show that the adjoint representation matrices(
TB
)
AC
≡ −ifABC
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furnish a dimG-dimensional representation of the Lie algebra

[TA, TB] = ifABCT
C .

Hint: commutators satisfy the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

(b) From the transformation law for A, show that the non-abelian field strength

transforms in the adjoint representation of the gauge group.

Below here are some more optional problems.

5. Wilson loops in abelian gauge theory at weak and strong coupling.

(a) At weak coupling, the Wilson loop expectation value is a gaussian integral.

In D = 4, study the continuum limit of a rectangular loop with time extent

T � R, the spatial extent. Show that this reproduces the Coulomb force.

For help, see VI.B of the Kogut paper linked above.

(b) Compute the combinatorial factors in the first few terms of the strong-

coupling expansion of the same quantity.

(c) Consider the case of two spacetime dimensions. In this case, the plaquette

variables are actually independent variables (since the relations between

them arise from the boundaries of 3-volumes).

(d) Consider the weak coupling calculation again for a Wilson loop coupled to

a massive vector field. Show that this reproduces an exponentially-decaying

force between external static charges.
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