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1. Brain-warmer: Path integral for a free particle

Consider the path integral description of the quantum mechanics of a free particle

in one dimension. The action is

S[x] =

∫ tf

0

dt
m

2
q̇2.

(a) What is the equation of motion 0 = δS
δq(t)

?

(b) Find the classical solution q(t) with q(t = 0) = q0 and q(t = tf ) = qf .

(c) Evaluate the action for the classical solution S[q], and evaluate the stationary-

phase approximation to the path integral for the quantum propagator

U(qf , tf ; q0, 0) ≡ 〈qf |U(tf ) |q0〉 =

∫
[dq]eiS[q] ' Usc ≡ eiS[q].

If you are feeling ambitious, include the next term in the semiclassical ex-

pansion: let the integration variable q ≡ q + y and treat the y integral as

gaussian: ∫
[dq]eiS[q] = eiS[q]

∫
[dy]ei

∫
ds

∫
dt δ2S
δq(t)δq(t)

|q=qy(t)y(s)+···.

(d) Derive the Hamiltonian associated to the action S =
∫
dtL above.

[That is, find p = ∂L
∂q̇

and eliminate q̇ in H(q, p) = pq̇ − L.]

(e) Treating this Hamiltonian quantum mechanically, evaluate the exact quan-

tum propagator,

U(qf , tf ; q0, 0) = 〈qf |U(tf ) |q0〉 = 〈qf | e−itfH |q0〉 .

Compare with the semiclassical approximation Usc defined above.

2. Gaussian integrals are your friends.

(a) Show that ∫ ∞
−∞

dqe−
1
2
aq2+jq =

√
2π

a
e
j2

2a .

[Hint: square the integral and use polar coordinates.]

1



(b) Consider a collection of variables qi, i = 1..N and a real, symmetric matrix

aij. Show that ∫ N∏
i=1

dqie
− 1

2
qiaijqj+J

iqi =
(2π)N/2√

det a
e

1
2
Jia−1

ij J
j

.

(Summation convention in effect, as always.)

[Hint: change integration variables to diagonalize a. det a =
∏
ai, where ai

are the eigenvalues of a.]

(c) For any function of the N variables, f(q), let

〈f(q)〉 ≡
∫ ∏N

i=1 dqie
− 1

2
qiaijqjf(q)

Z[J= 0]
, Z[J ] =

∫ N∏
i=1

dqie
− 1

2
qiaijqj+J

iqi .

Show that

〈qiqj〉 = ∂Ji∂Jj logZ[J ]|J=0 = a−1
ij

Also, convince yourself that

〈
eJiqi

〉
=

Z[J ]

Z[J = 0]
.

(d) Note that the number N in the previous parts may be infinite. This is really

the only path integral we know how to do.

(e) Now consider a Gaussian field q, governed by the (quadratic) euclidean

action

S[q] =

∫
dt

1

2

(
q̇2 + Ω2q2

)
.

Show that 〈
e−

∫
dsJ(s)q(s)

〉
q

= N e+ 1
2

∫
dsdtJ(s)G(s,t)J(t)

where G is the (Feynman) Green’s function for q, satisfying:(
−∂2

s + Ω2
)
G(s, t) = δ(s− t).

Here N is a normalization factor which is independent of J . Note the

similarity with the previous problem, under the replacement

a = −∂2
s + Ω2, a−1 = G.
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3. Gaussian identity.

Show that for a gaussian quantum system〈
eiKq

〉
= e−A(K)〈q2〉

and determine A(K). Here 〈...〉 ≡ 〈0| ... |0〉. Here by ‘gaussian’ I mean that H

contains only quadratic and linear terms in both q and its conjugate variable p

(but for the formula to be exactly correct as stated you must assume H contains

only terms quadratic in q and p; for further entertainment fix the formula for

the case with linear terms in H).

I recommend using the path integral representation (with hints from the previous

problem). Alternatively, you can use the harmonic oscillator operator algebra.

Or, better, do it both ways.

This result is useful for the following problem and in many other places.

4. Zero-phonon process.

Here is an application of the harmonic chain that we studied briefly (it is also an

application of the previous problem).

We wish to understand the probability for a photon to hit (our crude model of)

a crystalline solid without exciting any vibrational excitations.

Fermi’s golden rule says that the probability for a transition from one state of

the lattice |Li〉 to another |Lf〉 is proportional to

W (Li → Lf ) = | 〈Lf |HL |Li〉 |2.

Here HL is the hamiltonian describing the interaction between the photon and

an atom in the lattice. For the first parts of the problem, use the following form

(to be justified in the last part of the problem):

HL = AeiKx + h.c. (1)

where x is the (center of mass) position operator of the atom in question; K is

a constant (the photon wavenumber), and (for the purposes of the first parts of

the problem) A is a constant. +h.c. means ‘plus the hermitian conjugate of the

preceding stuff’.

(a) Recalling that x (up to an additive constant) is part of a collection of coupled

harmonic oscillators:

x = nx+ qn

evaluate the “vacuum persistence amplitude” 〈0|HL |0〉. This is the prob-

ability for the photon to be absorbed without production of any phonons.

You will find the result of problem 3 useful.
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(b) When the photon is absorbed in a zero-phonon process, where does its mo-

mentum go?

(c) From the previous calculation, you will find an expression that requires

you to sum over wavenumbers. Show that in one spatial dimension, the

probability for a zero-phonon transition is of the form

PMössbauer ∝ e−Γ lnL

where L is the length of the chain and Γ is a function of other variables.

Show that this infrared divergence is missing for the analogous model of

crystalline solids with more than one spatial dimension. (Cultural remark:

these amplitudes are called ‘Debye-Waller factors’).

(d) Convince yourself that a coupling HL of the form (13) arises from the min-

imal coupling of the electromagnetic field to the constituent charges of the

atom, after accounting for the transition made by the radiation field when

the photon is absorbed by the atom. ‘Minimal coupling’ means replacing the

momentum operator of the atom p, with the gauge-invariant combination

p → p + A. You will also need to recall the form of the quantized electro-

magnetic field in terms creation and annihilation operators for a photon of

definite momentum K.
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