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1. Brain-warmer.

Show that we did the right thing in the numerator of the electron self-energy:

use the Clifford algebra to show that

γµ
(
x/p+m0

)
γµ = −2x/p+ 4m0.

2. An example of renormalization in classical physics.

Consider a classical field in D + 2 spacetime dimensions coupled to an impurity

(or defect or brane) in D dimensions, located at X = (xµ, 0, 0). Suppose the

field has a self-interaction which is localized on the defect. For definiteness and

calculability, we’ll consider the simple (quadratic) action

S[φ] =

∫
dD+2X

(
1

2
∂µφ(X)∂µφ(X) + gδ2(~x⊥)φ2(X)

)
.

(a) What is the mass dimension of the coupling g? This is why I picked a

codimension1-two defect.

(b) Find the equation of motion for φ. Where have you seen an equation like

this before?

(c) We will study the propagator for the field in a mixed representation:

Gk(x, y) ≡ 〈φ(k, x)φ(−k, y)〉 =

∫
dDz eikµz

µ 〈φ(z, x)φ(0, y)〉

– i.e. we go to momentum space in the directions in which translation sym-

metry is preserved by the defect. Find and evaluate the diagrams contribut-

ing toGk(x, y) in terms of the free propagatorDk(x, y) ≡ 〈φ(k, x)φ(−k, y)〉g=0.

(We will not need the full form of Dk(x, y).) Sum the series.

(d) You should find that your answer to part 2c depends on Dk(0, 0), which

is divergent. This divergence arises from the fact that we are treating the

defect as infinitely thin, as a pointlike object – the δ2-function in the in-

teraction involves arbitrarily short wavelengths. In general, as usual, we

1An impurity whose position requires specification of p coordinates has codimension p.
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must really be agnostic about the short-distance structure of things. To re-

flect this, we introduce a regulator. For example, we can replace the fourier

representation of Dk(0, 0) with the cutoff version

Dk(0, 0; Λ) =

∫ Λ

0

d̄2q
eiq·0

k2 + q2
.

Do the integral.

(e) Now we renormalize. We will let the bare coupling g (the one which appears

in the Lagrangian, and in the series from part 2c) depend on the cutoff

g = g(Λ). We wish to eliminate g(Λ) in our expressions in favor of some

measurable quantity. To do this, we impose a renormalization condition:

choose some reference scale µ, and demand that

Gµ(x, y)
!

= Dµ(x, y)− g(µ)Dµ(x, 0)Dµ(0, y). (1)

This equation defines g(µ), which we regard as a physical quantity. Show

that (1) is satisfied if we let g(Λ) = g(µ)Z, with

Z =
1

1− g(µ)
4π

ln
(

Λ2

µ2

) .
(f) Find the beta function for g,

βg(g) ≡ µ
dg(µ)

dµ
,

and solve the resulting RG equation for g(µ) in terms of some initial condi-

tion g(µ0). Does the coupling get weaker or stronger in the UV?

3. Pauli-Villars practice.

Consider a field theory of two scalar fields with

L = −1

2
φ2φ− 1

2
m2φ2 − 1

2
Φ2Φ− 1

2
M2Φ2 − gφΦ2 + counterterms.

Compute the one-loop contribution to the self-energy of Φ. Use a Pauli-Villars

regulator – introduce a second copy of the φ field of mass Λ with the wrong-sign

propagator.

Determine the counterterms required to impose that the Φ propagator has a

pole at p2 = M2 with residue 1.
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