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1. Brain-warmer: Spectral representation at finite temperature.

In lecture we have derived a spectral representation for the two-point function of

a scalar operator in the vacuum state

iD(x) = 〈0| T O(x)O†(0) |0〉

Derive a spectral representation for the two-point function of a scalar operator

at a nonzero temperature:

iDβ(x) ≡ tr
e−βH

Zβ
T O(x)O†(0) =

1

Zβ

∑
n

e−βEn 〈n| T O(x)O†(0) |n〉 .

Here Zβ ≡ tre−βH is the thermal partition function. Check that the zero tem-

perature (β →∞) limit reproduces our previous result. Assume that O = O† if

you wish.

2. Another consequence of the optical theorem.

A general statement of the optical theorem is:

−i (M(a→ b)−M(b→ a)) =
∑
f

∫
dΦfM?(b→ f)M(a→ f) .

Consider QED with electrons and muons.

(a) Consider scattering of an electron (e−) and a positron (e+) into e−e+ (so

a = b in the notation above). We wish to consider the contribution to the

imaginary part of the amplitude for this process which is proportional to

Q2
eQ

2
µ where Qe and Qµ are the electric charges of the electron and muon

(which are in fact numerically equal but never mind that). Draw the rele-

vant Feynman diagram, and compute the imaginary part of this amplitude

ImΠµ(q2) (just the Q2
eQ

2
µ bit) as a function of s ≡ (k1 + k2)

2 where k1,2 are

the momenta of the incoming e+ and e−.

Check that the imaginary part is independent of the cutoff.
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(b) Use the optical theorem and the fact that the total cross section for e+e− →
µ+µ− must be positive

σ(e+e− → µ+µ−) ≥ 0

to show that a Feynman diagram with a fermion loop must come with a

minus sign. Check that with the correct sign, the optical theorem is verified.

3. Bubble-chain approximation for bound states.

In discussing the form of the spectral density for an operator which creates a

massive particle, I mentioned that in addition to the single-particle delta function

at s = m2, and the continuum above s = (2m)2, there could be delta functions

associated with bound states at m2 < s < (2m)2. Here we’ll get an idea how we

might discover such a thing theoretically.

For this problem, we’re going to work in D = 2 + 1 dimensions, so that we can

avoid the problem of UV divergences. Consider the theory of a single real scalar

with action

S[φ] =

∫
d3x

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 − g

4!
φ4

)
where m, g are real. In this problem we will consider both signs of g, without

worrying about questions of the stability of the vacuum.

(a) Consider the amplitude M(s) for elastic scattering φφ→ φφ, with s = E2
T ,

the square of the total center of mass energy. ComputeM(s) in the bubble-

chain approximation, defined as the following infinite sum of Feynman dia-

grams:

+ · · ·

Do not worry about justifying the validity of the approximation (it is not

justified in this theory, though it is in a large-n version of the theory), and

do not worry about convergence of the series. You can leave your answer as

a Feynman parameter integral.

(b) Show, by explicit calculation, that the bubble chain approximation to the

scattering amplitude obeys the optical theorem. [In elastic scattering in the

center of mass frame in 3d, the element of solid angle dΩ is just an element

of ordinary angle dθ, and dσ/dθ = |M|2
32πpE2

T
where p is the magnitude of the

spatial momentum of either particle.]
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(c) The interaction between the φ quanta could result in two of them formal a

bound state of mass MB. A signal of such a bound state is the appearance

of a pole in M(s) at s = M2
B on the real axis, but below threshold (0 <

M2
B < 4m2). Find the values of g for which the bubble-chain approximation

predicts bound states. [You are not asked to give an analytic expression for

MB.]

4. Soft gravitons? [optional. I’m re-posting this problem in case you want to think

about it more.] Photons are massless, and this means that the cross sections we

measure actually include soft ones that we don’t detect. If we don’t include them

we get IR-divergent nonsense.

Gravitons are also massless. Why don’t we need to worry about them in the

same way? Here we’ll sketch some hints for how to think about this question.

(a) Consider the action

S0[hµν ] =

∫
d4x

1

2
hµν2hµν .

This is a kinetic term for (too many polarizations of a) two-index symmetric-

tensor field hµν = hνµ (which we’ll think of as a small fluctuation of the

metric about flat space: gµν = ηµν+hµν , and this is where the coupling below

comes from). Like with the photon, we’ll rely on the couplings to matter to

keep unphysical polarizations from being made. Write the propagator. We

still raise and lower indices with ηµν .
1

(b) Couple the graviton to the electron field via

SG =

∫
d4x GhµνTµν

Tµν ≡ ψ̄ (γµ∂ν + γν∂µ)ψ. (1)

What are the engineering dimensions of the coupling constant G? What is

the new Feynman rule?

1A warning: I’ve done two misdeeds in the statement of this problem. First, the einstein-hilbert

term is
∫
d4x 1

8πGN

√
gR =

∫
d4x 1

8πGN
(∂h)2+ ... has a factor of GN in front of it. R has units of 1

length2 ,

and g is dimensionless, so GN has units of length2 – it is 8πGN = 1
M2

Pl
, where MPl is the Planck mass.

I’ve absorbed a factor of
√
GN into h so that the coefficient of the kinetic term is unity. Second, the

(∂h)2 here involves various index contractions, which I haven’t written. Some gauge fixing (de Donder

gauge) is required to arrive at the simple expression I wrote above, and one more thing – the hµν I’ve

written is actually the ‘trace-reversed’ graviton field

h̄µν ≡ hµν −
1

2
hηµν

where h ≡ ηµνhµν is the trace. (I didn’t write the bar.) For the details of this, see chapter 10 of my

GR notes.
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(c) Draw a (tree level) Feynman diagram which describes the creation of grav-

itational radiation from an electron as a result of its acceleration from the

absorption of a photon (eγ → eh). Evaluate it if you dare. Estimate or

calculate the cross section (hint: use dimensional analysis).

(d) Now the main event: study the one-loop diagram by which the graviton

corrects the QED vertex. Is it IR divergent? If not, why not?

(e) If you get stuck on the previous part, replace the graviton field by a massless

scalar π(x). Compare the case of derivative coupling λ∂µπψ̄γ
µψ with the

more direct Yukawa coupling yπψ̄ψ.

(f) Quite a bit about the form of the coupling of gravity to matter is deter-

mined by the demand of coordinate invariance. This plays a role like gauge

invariance in QED. Acting on the small fluctuation, the transformation is

hµν(x)→ hµν(x) + ∂µλν(x) + ∂νλµ(x).

What condition does the invariance under this (infinitesimal) transformation

impose on the object Tµν appearing in (1).

4


