University of California at San Diego — Department of Physics — Prof. John McGreevy

Physics 215B QFT Winter 2019
Assignment 10 (“Final Exam”)

Due 12:30pm Wednesday, March 20, 2019

1. Brain-warmers.
(a) Show that the adjoint representation matrices
(1) ac = ~1fanc
furnish a dim G-dimensional representation of the Lie algebra
(T4, TP = ifapcTC .
Hint: commutators satisfy the Jacobi identity

(A, [B,C]] + [B,[C, A]] + [C.[A, B]] = 0.

(b) From the transformation law for A, show that the non-abelian field strength
transforms in the adjoint representation of the gauge group.

(c¢) Show that
trF' A F' = dtr (A/\dA—i—%A/\A/\A) .

Write out all the indices I've suppressed.
(d) [Bonus] If you are feeling under-employed, find ws,_; such that trf” =
dwap—1.
2. The field of a magnetic monopole.

We saw that [ = dA implies (when A is smooth) that dF" = 0, which means
no magnetic charge. If A is singular, dF' can be nonzero. Moreover, by a gauge
transformation we can move the singularity around and hide it.

A magnetic monopole of magnetic charge ¢ is defined by the condition that
| g2 ' = g, where S? any sphere surrounding the monopole. If the system is
spherically symmetric, we can write

F=dcos Odp.
47
(In this problem, we’ll work on a sphere at fixed distance from the monopole.)
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(a) Show that the vector potential

g
Ay = = —1
N= o (cos® )dp

gives the correct ' = dA. Show that it is a well-defined one-form on the
sphere except at the south pole 6 = 7.

(b) Show that the one-form
9
Ag = = 1
5= (cos@+1)dy

also gives the correct F' = dA. Show that it is well-defined except at the
north pole 6 = 0.

(c) Near the equator both Ay g are well-defined. Show that as long as eg € 27Z,
these two one-forms differ by a gauge transformation

1
As = Ay = g (0, 9)dg(0, )

for g(6, ¢) a U(1)-valued function on the sphere, well-defined away from the
poles.
3. Abrikosov-Nielsen-Oleson vortex string.

Consider the Abelian Higgs model in D = 3 + 1:
— 1 Qv 1 2
L= ~{Fu B + D0~ V(16)

where ¢ is a scalar field of charge e whose covariant derivative is D, ¢ = (9, — igA,,) ¢,
and let’s take

Vlel) = (1P - v?)?

for some couplings x,v. Here we are going to do some interesting classical field
theory. Set ¢ = 1 for a bit.

(a) Consider a configuration which is independent of 3, one of the spatial co-
ordinates, and static (independent of time). Show that its energy density
(energy per unit length in x?) is

1 1
U= [ (5E+ 5D+ Vi) ).

(b) Consider the special case where £ = 1. Assuming that the integrand falls
off sufficiently quickly at large x!2, show that

1 1 . L. .
U,izl = /dQQ? (5 <F12 + ’Cb‘Q - U2)2 + Z|Dl¢ + lEiijqb‘z + U2F12 — §l€kg8k (¢ Dggb)) .
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The first two terms in the energy density of the previous part are squares and
hence manifestly positive, so setting to zero the things being squared will
minimize the energy density. Show that the resulting first-order equations
(they are called BPS equations after people with those initials, Bogolmonyi,
Prasad, Sommerfeld)

0= (D;+i€;;D;) ¢, Fia = —|¢|*> +v?

are solved by (z! + ir? = rel¥)

b= e f(r), Ay +id; = —ieiw—“(”r_ n
if
J'=2Fd = =)
with boundary conditions
a—=0,f—=v+0 (™), atr— (1)

a—=n+00?), f—=r"(1+0(0?), atr—0.

(For other values of k, the story is not as simple, but there is a solution
with the same qualitative properties. See for example §3.3 of E. Weinberg,
Classical solutions in Quantum Field Theory.)

The second BPS equation and (1) imply that all the action (in particular
Fyy) is localized near r = 0. Evaluate the magnetic flux through the z' — z?
plane, ® = [ B-da in the vortex configuration labelled by n. Show that the

energy density is U = % - .

Show that the previous result for the flux follows from demanding that the
two terms in D;¢ cancel at large r so that

D¢ "= 0 (2)
faster than 1/r. Solve (2) for A; in terms of ¢ and integrate [ d*zFis.

Argue that a single vortex (string) in the ungauged theory (with global U(1)
symmetry)

L =196 +V(|¢l)

does not have finite energy per unit length. By a vortex, I mean a configu-

ration where ¢ "=~ vel?, where z! 4 iz? = re'®.

Consider now the case where the scalar field has charge ¢. (Recall that in a

superconductor made by BCS pairing of electrons, the charged field which

condenses has electric charge two.) Show that the magnetic flux in the core
he

of the minimal (n = 1) vortex is now (restoring units) .
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4. BPS conditions from supersymmetry. [bonus!] What’s special about x = 17

For one thing, it is the boundary between type I and type II superconductors

(which are distinguished by the size of the vortex core). More sharply, it means

the mass of the scalar equals the mass of the vector, at least classically. Moreover,
in the presence of some extra fermionic fields, the model with this coupling has an

additional symmetry mixing bosons and fermions, namely supersymmetry. This

symmetry underlies the special features we found above. Here is an outline (you

can do some parts without doing others) of how this works. The logic in part

(c) underlies a lot of the progress in string theory since the mid-1990s. Please do

not trust my numerical factors.

(a)

Add to L, a charged fermion ¥ (partner of ¢) and a neutral Majorana
fermion A (partner of A,,):

1 _ _ _
L= §iwb\11 +iNDA + AU + h.c..
Consider the transformation rules
1
0cAy = iEqu ), 60 = Dygye, dedp = —ieW, 6 = —Sio™ Flue + i(|o)* —v)e

where the transformation parameter € is a Majorana spinor (and a grass-
mann variable). Show that (something like this) is a symmetry of £ =
Ly, + Ly. This is N = 1 supersymmetry in D = 4.

Show that the conserved charges associated with these transformations @,
(they are grassmann objects and spinors, since they generate the transfor-
mations, via dfields = [e,Q, + h.c., fields]), satisfy the algebra

{Q,Q} = 29"P, +29"%, (3)

where P, is the usual generator of spacetime translations and X, is the vortex
string charge, which is nonzero in a state with a vortex string stretching in
the p direction. Q = Q4" as usual.

If we multiply (3) on the right by 7°, we get the positive operator {Q., QL}
This operator annihilates states which satisfy @ |BPS) = 0 for some com-
ponents of ). Such a state is therefore invariant under some subgroup of
the superymmetry, and is called a BPS state. Now look at the right hand
side of (3)x4? in a configuration where 33 = mnv? and show that its energy
density is £ > m|n|v?, with the inequality saturated only for BPS states.

To find BPS configurations, we can simply set to zero the relevant supersym-
metry variations of the fields. Since we are going to get rid of the fermion
fields anyway, we can set them to zero and consider just the (bosonic) vari-
ations of the fermionic fields. Show that this reproduces the BPS equations.
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5. Wilson loops in abelian gauge theory at weak and strong coupling.

(a)

(b)

()

()

At weak coupling, the Wilson loop expectation value is a gaussian integral.
In D = 4, study the continuum limit of a rectangular loop with time extent
T > R, the spatial extent. Show that this reproduces the Coulomb force.

Consider the weak coupling calculation again for a Wilson loop coupled to
a massive vector field. Show that this reproduces an exponentially-decaying
force between external static charges.

[bonus problem| Compute the combinatorial factors in the first few terms
of the strong-coupling expansion of the Wilson loop in U(1) lattice gauge
theory.

[bonus problem| Consider the case of lattice gauge theory in two spacetime
dimensions. In this case, show that the plaquette variables are actually
independent variables.

6. Chern-Simons theory, flux attachment, and anyons. [optional]

(a)

Consider the following action for a U(1) gauge field in D = 2 + 1:

1 k
S[A] :/(—4—92F/\*F+EAAF).

What are the dimensions of g and k&7 Find the equations of motion for A.
Look for plane wave solutions. Show that the resulting particle excitations
have a mass which grows with g.

For the rest of the problem, take g — oo. Notice that the resulting the-
ory does not require a metric, since the action is made only from exterior
derivatives and wedge products of forms. Now add a matter current:

SﬂA]z/(ﬁA/\F—i—A/\*j).

Find the equations of motion. Show that the Chern-Simons term attaches
k units of flux to the particles: Fis o p.

Show using the Bohm-Aharonov effect that the particles whose current den-
sity is j# have anyonic statistics with exchange angle 7 (supposing they were
bosons before we coupled them to A).

One way to do this is to consider a configuration of j which describes one
particle adiabatically encircling another. Show that its wavefunction ac-

quires a phase €>™/*  This is twice the phase obtained by going halfway
around, which (when followed by an innocuous translation) would exchange

the particles.



