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0.1 Introductory remarks

Here is a brief reminder about the big picture. Quantum field theory (QFT) is the

quantum mechanics of extensive degrees of freedom. What I mean by this is that at

each point of space, there’s some stuff that can wiggle.

‘Extensive degrees of freedom’ are those which, if we

like, we can sprinkle over vast tracts of land, like sod

(depicted in the figure at right). And also like sod,

each little patch of degrees of freedom only interacts

with its neighboring patches: this property of sod

and of QFT is called locality.

More precisely, in a quantum mechanical system, we specify the degrees of freedom

by their Hilbert space; by an extensive system, I’ll mean one in which the Hilbert

space is of the form H = ⊗patches of spaceHpatch and the interactions are local H =∑
patches H(nearby patches).1

Such a starting point is useful as a description of the excitations of the vacuum

(high energy physics), or (perhaps more obviously) as a description of various kinds of

condensed matter. In the former case, there is an (emergent) Lorentz symmetry. As

we saw a bit last quarter, the long-wavelength excitations of the coupled patches of

space need have little in common with the microscopic variables. The big goal in this

business is to connect these two descriptions; the framework in which we will do so is

called the Renormalization Group (RG).

Sometimes there is a description in terms of weakly-coupled fields. Last quarter

we saw that the low-energy excitations of weakly-coupled fields are particles. A con-

sequence of relativity is that the number of particles isn’t fixed. That is: there are

processes where the number of particles changes in time. Sometimes this is used to

motivate the study of QFT. It’s a necessary consequence of Lorentz symmetry, but the

converse is false: particle production and destruction can happen without relativity.

‘Divergences’. It is tempting to try to define QFT directly in the continuum,

rather than in a regulated way as I have above. Such a description is more symmetric,

and hence easier to calculate with, no question. In practice, we will use the continuum

a lot of the time. When we do so, we will encounter UV divergences, and it will be

useful to remember the starting point above. It will also be useful to remember that

we have no way of knowing that some version of the starting point above isn’t correct

1Actually, the Hilbert space of a gauge theory is not of this form; rather, it is a subspace of such

a space which satisfies the Gauss law. This is a source of a lot of confusion, which I hope to dispel.
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at short-enough distances, and that anything we say about such short distance scales

is a total fiction on which our answers to physics questions cannot depend. Part of our

job is to understand why it is that our complete ignorance of short-distance physics

doesn’t prevent us from making progress.

Last quarter 215A ended right when we learned to compute amplitudes for simple

processes in QED. There are many measurable quantities that can be computed using

the formalism you developed, and the success of leading-order QED is a real high point

of physics. I have a bit more to say about that success.

Lurking behind that success, however, is a dark cloud. The leading order of per-

turbation theory is given by tree diagrams; more complicated diagrams should be

suppressed by more powers of e2

4π
≡ α. You might think that if the leading calculation

worked so well, we should do even better by looking at the next term. But there is a

surprise: naively calculating the next term in the continuum gives an infinite correction.

So an important job will be to explain the non-naive point of view on this calculation

which allows us to extract finite, meaningful answers from perturbation theory.

Even more important will be to give a better point of view, from which we never

would have encountered divergences in the first place. The (silly) name for this point

of view is the renormalization group.

So here are some goals for the quarter, both practical and philosophical:

• A central theme this quarter will be coarse-graining in quantum systems with

extensive degrees of freedom, aka the renormalization group (RG) in QFT.

By ‘coarse-graining’ I mean ignoring things we don’t care about, or rather only

paying attention to them to the extent that they affect the things we do care

about. And the things we should care about the most are the biggest ones – the

modes with the longest wavelength. So the ‘better perspective’ alluded to above

is: we should try to understand QFT scale by scale.

To continue the sod example in 2+1 dimensions, a person laying the sod in the

picture above cares that the sod doesn’t fall apart, and rolls nicely onto the ground

(as long as we don’t do high-energy probes like bending it violently or trying

to lay it down too quickly). These long-wavelength properties of rigidity and

elasticity are collective, emergent properties of the microscopic constituents (sod

molecules) – we can describe the dynamics involved in covering the Earth with

sod (never mind whether this is a good idea2) without knowing the microscopic

theory of the sod molecules (‘grass’). Our job is to think about the relationship

between the microscopic model (grassodynamics) and its macroscopic counterpart

2It isn’t. Grass is a really stupid plant for us to be growing.
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(in this case, suburban landscaping). In my experience, learning to do this is

approximately synonymous with understanding.

• I would like to convince you that “non-renormalizable” does not mean “not worth

your attention,” and explain the incredibly useful notion of an Effective Field

Theory.

• At some point we should talk about non-Abelian gauge theory, since it’s the basis

of the Standard Model of particle physics.

• There is more to QFT than perturbation theory about free fields in a Fock vac-

uum. There exist QFTs that we don’t know how to build in this way at all.

• It is worthwhile to spend some some time thinking about non-perturbative physics,

effects of topology, solitons. Topology is one tool for making precise statements

without perturbation theory (the basic idea: if we know something is an integer,

it is easy to get many digits of precision!). Maybe this will wait until 215C.

• In addition to its importance in high energy physics, I want to emphasize that

QFT is also quite central in many aspects of condensed matter physics. From

the point of view of someone interested in QFT, high energy particle physics has

the severe drawback that it offers only one example! (OK, for some purposes we

can think about QCD and the electroweak theory separately...)

From the high-energy physics point of view, we could call this the study of regu-

lated QFT, with a particular kind of lattice regulator. Why make a big deal about

‘regulated’? Besides the fact that this is how QFT comes to us (when it does)

in condensed matter physics, such a description is required if we want to know

what we’re talking about. For example, we need it if we want to know what we’re

talking about well enough to explain it to a computer. Many QFT problems are

too hard for our brains. A related but less precise point is that I would like to do

what I can to erase the problematic, theorist-centered perspective on QFT which

‘begins from a classical lagrangian and quantizes it’.

• Given time, I would like to show that many fancy phenomena precious to par-

ticle physicists can emerge from humble origins in the kinds of (completely

well-defined) local quantum lattice models we will study. Here I have in mind:

fermions, gauge theory, photons, anyons, strings, topological solitons, CFT, and

many other sources of wonder I’m forgetting right now.
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0.2 Sources and acknowledgement

The material in these notes is collected from many places, among which I should

mention in particular the following:

Peskin and Schroeder, An introduction to quantum field theory

Zee, Quantum Field Theory (2d Edition)

Banks, Modern Quantum Field Theory: A Concise Introduction

Schwartz, Quantum field theory and the standard model

David Tong’s lecture notes

Many other bits of wisdom come from the Berkeley QFT courses of Prof. L. Hall

and Prof. M. Halpern.

Some other books that might be useful to us are:

Xiao-Gang Wen, Quantum Field Theory of Many-Body Systems

Sidney Coleman, Aspects of Symmetry

Alexander Polyakov, Gauge Fields and Strings

Eduardo Fradkin, Field Theories of Condensed Matter Systems

Eduardo Fradkin, Quantum Field Theory, an Integrated Approach
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0.3 Conventions

Following most QFT books, I am going to use the + − −− signature convention for

the Minkowski metric. I am (somehow, still) used to the other convention, where time

is the weird one, so I’ll need your help checking my signs. More explicitly, denoting a

small spacetime displacement as dxµ ≡ (dt, d~x)µ, the Lorentz-invariant distance is:

ds2 = +dt2 − d~x · d~x = ηµνdx
µdxν with ηµν = ηµν =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


µν

.

(spacelike is negative). We will also write ∂µ ≡ ∂
∂xµ

=
(
∂t, ~∇x

)µ
, and ∂µ ≡ ηµν∂ν . I’ll

use µ, ν, ... for Lorentz indices, and i, j, k, ... for spatial indices.

The convention that repeated indices are summed is always in effect unless other-

wise indicated. d is the number of space dimensions, D is the number of spacetime

dimensions (it’s bigger!).

≡ means ‘equals by definition’. A
!

= B means we are demanding that A = B.

A
?
= B means A probably doesn’t equal B.

A consequence of the fact that english and math are written from left to right is

that time goes to the left.

A useful generalization of the shorthand ~ ≡ h
2π

is d̄k ≡ dk
2π
. I will also write

/δ
d
(q) ≡ (2π)dδ(d)(q). I will try to be consistent about writing Fourier transforms as∫

ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts. WLOG ≡ without loss of generality.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

+h.c. ≡ plus hermitian conjugate.

L 3 O means the object L contains the term O.

We work in units where ~ and the speed of light, c, are equal to one unless otherwise

noted. When I say ‘Peskin’ I usually mean ‘Peskin & Schroeder’.

Please tell me if you find typos or errors or violations of the rules above.
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1 To infinity and beyond

At this point I believe you are able to use QED to compute the amplitudes and cross-

sections for many physical processes involving electrons, photons and positrons. More

precisely, you know how to compute the leading-order-in-α amplitudes, using Feynman

diagrams which are trees – diagrams without loops. The natural next step is to look

at the next terms in the perturbation expansion in α, which come from diagrams with

one loop. This innocent-seeming step opens a big can of worms. The reason this is a

big step is that a tree-level process is classical in a certain sense.

In a tree-level diagram, the quantum numbers (and in particular the momenta) of

the intermediate states are fixed by the external states3. In contrast, once there is a

loop, there are undetermined momenta which must be summed, and this sum includes,

it seems, arbitrarily high momentum modes. Surely we have no information yet about

these modes from our piddling low-energy experiments. (Perhaps this is an opportunity

to learn about them?) What do we do?

In order to put ourselves in the right frame of mind to think about this stuff, we’ll

make a brief retreat to a parable about a system with finitely many degrees of freedom

in §1.1. (Another useful parable is our discussion of Casimir forces from last quarter.)

Then we’ll apply these lessons to a simple field theory example, namely scalar field

theory. Then we’ll come back to perturbation theory in QED. Reading assignment for

this chapter: Zee §III.

1.1 A parable from quantum mechanics on the breaking of

scale invariance

Recall that the coupling constant in φ4 theory in D = 3 + 1 spacetime dimensions

is dimensionless, and the same is true of the electromagnetic coupling e in QED in

D = 3+1 spacetime dimensions. In fact, the mass parameters are the only dimensionful

quantities in those theories, at least in their classical avatars. This means that if we

ignore the masses, for example because we are interested in physics at much higher

energies, then these models seem to possess scale invariance: the physics is unchanged

under zooming in or out.

Here we will study a simple quantum mechanical example (that is: an example

with a finite number of degrees of freedom)4 with such (classical) scale invariance. It

3If multiple diagrams contribute to the same process, there can still be a small amount of quantum

interference.
4I learned this example from Marty Halpern.
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exhibits many interesting features that can happen in strongly interacting quantum

field theory – asymptotic freedom, dimensional transmutation. Because the model is

simple, we can understand these phenomena without resort to perturbation theory.

They will nevertheless illuminate some ways of thinking that we’ll need in examples

where perturbating is our only option.

Consider the following (‘bare’) action:

S[q] =

∫
dt

(
1

2
~̇q2 + g0δ

(2)(~q)

)
≡
∫
dt

(
1

2
~̇q2 − V (~q)

)
where ~q = (x, y) are two coordinates of a quantum particle, and the potential involves

δ(2)(~q) ≡ δ(x)δ(y), a Dirac delta function. I chose the sign so that g0 > 0 is attractive.

(Notice that I have absorbed the inertial mass m in 1
2
mv2 into a redefinition of the

variable q, q →
√
mq.)

First, let’s do dimensional analysis (always a good idea). Since ~ = 1, all dimen-

sionful quantites are some power of an energy. Let [X] denote the number of powers

of energy in the units of the quantity X; that is, if X ∼ (energy)−ν(X) then we have

[X] = ν(X), a number. We have:

[t] = [(energy/~)−1] = −1 =⇒ [dt] = −1.

The action appears in the exponent in the path integrand, and is therefore dimension-

less (it has units of ~), so we had better have:

0 = [S] = [~]

and this applies to each term in the action. We begin with the kinetic term:

0 = [

∫
dt~̇q2] =⇒

[~̇q2] = +1 =⇒ [~̇q] = +
1

2
=⇒ [~q] = −1

2
.

Since 1 =
∫
dqδ(q), we have 0 = [dq] + [δ(q)] and

[δd(~q)] = −[q]d =
d

2
, and in particular [δ2(~q)] = 1.

This implies that when d = 2 the naive (“engineering”) dimensions of the coupling

constant g0 are [g0] = 0 – it is dimensionless. Classically, the theory does not have a

special length scale; it is scale invariant.
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The Hamiltonian associated with the Lagrangian above is

H =
1

2

(
p2
x + p2

y

)
+ V (~q).

Now we treat this as a quantum system. Acting in the position basis, the quantum

Hamiltonian operator is

H = −~2

2

(
∂2
x + ∂2

y

)
− g0δ

(2)(~q)

So in the Schrödinger equation Hψ =
(
−~2

2
∇2 + V (~q)

)
ψ = Eψ, the second term on

the LHS is

V (~q)ψ(~q) = −g0δ
(2)(~q)ψ(0).

To make it look more like we are doing QFT, let’s solve it in momentum space:

ψ(~q) ≡
∫

d2p

(2π~)2 e
i~p·~q/~ϕ(~p) ≡

∫
d̄2p ei~p·~qϕ(~p) (1.1)

where I used some notation from §0.3 and set ~ = 1. The delta function is

δ(2)(q) =

∫
d2p

(2π~)2 e
i~p·~q/~. (1.2)

So the Schrödinger equation says(
−1

2
∇2 − E

)
ψ(q) = −V (q)ψ(q)∫

d̄2peip·q
(
p2

2
− E

)
ϕ(p) = +g0δ

2(q)ψ(0)

(1.2)
= +g0

(∫
d̄2peip·q

)
ψ(0) (1.3)

where to get to the second line, we just plugged in (1.1). Integrating the both-hand

side of (1.3) over q: (
∫

d̄2qe−ip·q ((1.3)) ) says(
~p2

2
− E

)
ϕ(~p) = +g0

∫
d2p′

(2π~)2ϕ(~p′)︸ ︷︷ ︸
=ψ(0)

There are two cases to consider:

• ψ(~q = 0) =
∫

d̄2pϕ(~p) = 0. Then this case is the same as a free theory, with the

constraint that ψ(0) = 0, (
~p2

2
− E

)
ϕ(~p) = 0

i.e. plane waves which vanish at the origin, e.g. ψ ∝ sin pxx
~ e
±ipyy/~. These scat-

tering solutions don’t see the delta-function potential at all.
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• ψ(0) ≡ α 6= 0, some constant to be determined. This means ~p2/2−E 6= 0, so we

can divide by it :

ϕ(~p) =
g0

~p2

2
− E

(∫
d̄2p′ϕ(~p′)

)
=

g0

~p2

2
− E

α.

The integral of the RHS (for ψ(0) = α) is a little problematic if E > 0, since

then there is some value of p where p2 = 2E. Avoid this singularity by going to

the boundstate region: consider E = −εB < 0. So:

ϕ(~p) =
g0

~p2

2
+ εB

α.

What happens if we integrate this
∫

d̄2p to check self-consistency – the LHS should

give α again:

0
!

=

∫
d̄2pϕ(~p)︸ ︷︷ ︸

=ψ(0)=α 6=0

(
1−

∫
d̄2p

g0

~p2

2
+ εB

)

=⇒
∫

d̄2p
g0

~p2

2
+ εB

= 1

is a condition on the energy εB of possible boundstates.

But there’s a problem: the integral on the LHS behaves at large p like∫
d2p

p2
=∞ .

At this point in an ordinary QM class, you would give up on this model. In QFT we

don’t have that luxury, because this kind of thing happens all over the place. Here’s

what we do instead.

We cut off the integral at some large p = Λ:∫ Λ d2p

p2
∼ log Λ .

This our first example of the general principle that a classically scale invariant system

will exhibit ‘logarithmic divergences’ (meaning: logarithmic dependence on the cutoff).

It’s the only dependence on Λ allowed by dimensional analysis.

The introduction of the cutoff can be thought of in many ways: we could say there

are no momentum states with |p| > Λ (as in a lattice model), or maybe we could say

that the potential is not really a delta function if we look more closely. The choice of
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narrative here had better not affect our answers to physics questions at energies far

below the cutoff.

More precisely:∫ Λ d2p
p2

2
+ εB

= 2π

∫ Λ

0

pdp
p2

2
+ εB

= 2π log

(
1 +

Λ2

2εB

)
.

So in our cutoff theory, the boundstate condition is:

1 = g0

∫ Λ d̄2p
p2

2
+ εB

=
g0

2π~2
log

(
1 +

Λ2

2εB

)
.

A solution only exists for g0 > 0. This makes sense since only then is the potential

attractive (recall that V = −g0δ).

Now here’s a trivial-seeming step that offers a dramatic new vista: solve for εB.

εB =
Λ2

2

1

e
2π~2

g0 − 1
. (1.4)

As we remove the cutoff (Λ → ∞), we see that E = −εB → −∞, the boundstate

becomes more and more bound – the potential is too attractive.

Suppose we insist that the boundstate energy εB is a fixed thing – imagine we’ve

measured it to be 200 MeV5. We should express everything in terms of the measured

quantity. Then, given some cutoff Λ, we should solve for g0(Λ) to get the boundstate

energy we have measured:

g0(Λ) =
2π~2

log
(

1 + Λ2

2εB

) .
This is the crucial step: this silly symbol g0 which appeared in our action doesn’t mean

anything to anyone (see Zee’s dialogue with the S.E. in section III). We are allowing

g0 ≡ the bare coupling to be cutoff-dependent.

Instead of a dimensionless coupling g0, the useful theory contains an arbitrary

dimensionful coupling constant (here εB). This phenomenon is called dimensional

transmutation (d.t.). The cutoff is supposed to go away in observables, which depend

on εB instead.

In QCD we expect that in an identical way, an arbitrary scale ΛQCD will enter into

physical quantities. (If QCD were the theory of the whole world, we would work in

units where it was unity.) This can be taken to be the rest mass of some mesons –

boundstates of quarks. Unlike this example, in QCD there are many boundstates, but

5Spoiler alert: I picked this value of energy to stress the analogy with QCD.
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their energies are dimensionless multiplies of the one dimensionful scale, ΛQCD. Nature

chooses ΛQCD ' 200 MeV.

[This d.t. phenomenon was maybe first seen in a perturbative field theory in S.

Coleman, E. Weinberg, Phys Rev D7 (1973) 1898. Maybe we’ll come back to their

example.]

There are more lessons in this example. Go back to (1.4):

εB =
Λ2

2

1

e
2π~2

g0 − 1

g0→0
' e

−2π~2

g0 6=
∞∑
n=0

gn0 fn(Λ)

it is not analytic (i.e. a power series) in g0(Λ) near small g0; rather, there is an essential

singularity in g0. (All derivatives of εB with respect to g0 vanish at g0 = 0.) You can’t

expand the dimensionful parameter in powers of the coupling. This means that you’ll

never see it in perturbation theory in g0. Dimensional transmutation is an inherently

non-perturbative phenomenon.

Notice furthermore that even for moderately weak coupling, εB � Λ2. For example,

when g0 = .1, εB/Λ
2 = 10−28! Dimensional transmutation generates a hierarchy of

scales. This phenomenon explains why the critical temperature below which metals go

superconducting is much less than their intrinsic energy scale (the Fermi energy).

Look at how the bare coupling depends on the cutoff in this example:

g0(Λ) =
2π~2

log
(

1 + Λ2

2εB

) Λ2�εB→ 2π~2

log
(

Λ2

2εB

) Λ2�εB→ 0

– the bare coupling vanishes in this limit, since we are insisting that the parameter εB
is fixed. This is called asymptotic freedom (AF): the bare coupling goes to zero (i.e.

the theory becomes free) as the cutoff is removed. This also happens in QCD.

[End of Lecture 1]

RG flow equations. Define the beta function as the logarithmic derivative of the

bare coupling with respect to the cutoff:

Def: β(g0) ≡ Λ
∂

∂Λ
g0(Λ) .

For this theory

β(g0) = Λ
∂

∂Λ

 2π~2

log
(

1 + Λ2

2εB

)
 calculate

= − g2
0

π~2

 1︸︷︷︸
perturbative

− e−2π~2/g0︸ ︷︷ ︸
not perturbative

 .

Notice that it’s a function only of g0, and not explicitly of Λ. Also, in this simple toy

theory, the perturbation series for the beta function happens to stop at order g2
0.
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β measures the failure of the cutoff to disappear from our discussion – it signals a

quantum mechanical violation of scale invariance. What’s β for? Flow equations:

ġ0 = β(g0).

6 This is a tautology. The dot is

Ȧ = ∂sA, s ≡ log Λ/Λ0 =⇒ ∂s = Λ∂Λ.

(Λ0 is some reference scale.) But forget for the moment that this is just a definition:

ġ0 = − g2
0

π~2

(
1− e−2π~2/g0

)
.

This equation tells you how g0 changes as you change the cutoff. Think of it as a

nonlinear dynamical system. Given a dynamical system, the first question you should

ask is about its fixed points.

Def: A fixed point g?0 of a flow is a value of the coupling g0 where the flow stops:

0 = ġ0|g?0 = β(g?0) ,

a zero of the beta function. (Note: if we have many couplings gi, then we have such

an equation for each g: ġi = βi(g). So βi is (locally) a vector field on the space of

couplings. In that case a fixed point is a simultaneous zero of every component of the

vector field.)

Where are the fixed points in our example?

β(g0) = − g2
0

π~2

(
1− e−2π~2/g0

)
.

There’s only one: g?0 = 0, near which β(g0) ∼ − g2
0

π~ , the non-perturbative terms are

small. What does the flow look like near this point? For g0 > 0, ġ0 = β(g0) < 0. With

this (high-energy) definition of the direction of flow, g0 = 0 is an attractive fixed point:

*<-<-<-<-<-<-<-<-<-<-<------------------------ g_0

6Warning: The sign in this definition carries a great deal of cultural baggage. With the definition

given here, the flow (increasing s) is toward the UV, toward high energy. This is the high-energy

particle physics perspective, where we learn more physics by going to higher energies. As we will see,

there is a strong argument to be made for the other perspective, that the flow should be regarded as

going from UV to IR, since we lose information as we move in that direction – in fact, the IR behavior

does not determine the UV behavior in general, but UV does determine IR.
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g?0 = 0.

We already knew this. It just says g0(Λ) ∼ 1
log Λ2 → 0 at large Λ. A lesson is that in

the vicinity of such an AF fixed point, the non-perturbatuve stuff e
−2π~2

g0 is small. So

we can get good results near the fixed point from the perturbative part of β. That is:

we can reliably compute the behavior of the flow of couplings near an AF fixed point

perturbatively, and be sure that it is an AF fixed point. This is the situation in QCD.

On the other hand, the d.t. phenomenon that we’ve shown here is something that

we can’t prove in QCD. However, the circumstantial evidence is very strong!

Another example where this happens is quantum mechanics in any number of vari-

ables with a central inverse-square potential V = −g2
0

r2 . It is also classically scale

invariant:

[r] = −1

2
,

[
1

r2

]
= +1 =⇒ [g0] = 0.

This model was studied in K.M. Case, Phys Rev 80 (1950) 797 and you will study it on

the first homework. The resulting boundstates and d.t. phenomenon are called Efimov

states; this model preserves a discrete scale invariance.

Here’s a quote from Marty Halpern from his lecture on this subject:

I want you to study this set of examples very carefully, because it’s the only time in

your career when you will understand what is going on.

In my experience it’s been basically true. For real QFTs, you get distracted by Feynman

diagrams, gauge invariance, regularization and renormalization schemes, and the fact

that you can only do perturbation theory.
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1.2 A simple example of perturbative renormalization in QFT

[Zee §III.1, Schwartz §15.4] Now let’s consider an actual, interacting field theory but a

simple one, namely the theory of a real scalar field in four dimensions, with

L = −1

2
φ2φ− 1

2
m2φ2 − g

4!
φ4. (1.5)

Demanding that the action is dimensionless means that [φ] = D−2
2

so [m] = 1 and

[g] = 4−D
2

, so g is dimensionless in D = 4. As above, this will mean logarithms!

Let’s do 2← 2 scattering of φ particles.

iM2←2 = + O(g3)

= −ig + iMs + iMt + iMu + O(g3)

where, in terms of qs ≡ k1 + k2, the s-channel 1-loop amplitude is

iMs =
1

2
(−ig)2

∫
d̄4k

i

k2 −m2 + iε

i

(qs − k)2 −m2 + iε
∼
∫ Λ d4k

k4
.

Parametrizing ignorance. What is a scalar field? One way to discover scalar

field theory is to start with a chain of masses connected by springs, like a mattress, and

look at the long-wavelength (small-wavenumber) modes. So the coherent excitations of

such a field are sound waves and the quanta of the field are called phonons. In the sum,∫
d4k, the region of integration that’s causing the trouble is not the part where the

system looks most like a field theory. That is: if we look closely enough (small enough

1/k), we will see that the mattress is made of springs. In terms of the microscopic

description with springs, there is a smallest wavelength, of order the inverse lattice

spacing: the sum over k stops.

Field theories arise from many such models, which may differ dramatically in their

short-distance physics. We’d like to not worry too much about which one, but rather

say things which do not depend on this choice. Recall the discussion of the Casimir

force from 215A: in that calculation, different choices of regulators for the mode sum

corresponded (for example) to different material properties of the conducting plates.

The Casimir force was independent of this choice; more generally, it is an important

part of the physics problem to identify which quantities are UV sensitive and which

are not.

If we had an actual lattice (like the chain of springs), we would replace the inverse

propagator p2 − m2 = ω2 − ~p2 − m2 with ω2 − ω2
p − m2, where ωp is the dispersion
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relation (e.g. ωp = 2t
∑d

i=1 (1− cos pia) for nearest-neighbor hopping on the cubic

lattice), and p is restricted to the Brillouin zone (−π/a ≤ pi < π/a for the cubic

lattice). Instead, for simplicity, let’s keep just impose a hard cutoff on the euclidean

momentum
∑d

i=0 p
2 ≤ Λ2.

Parametrizing ignorance is ubiquitous in science. In the context of field theory, at

least in the high-energy community, it is called ‘regularization’.

Now we need to talk about the integral a little more. The part that is causing the

trouble is the bit with large k, which might as well be |k| ∼ Λ� m, so let’s set m = 0

for simplicity.

We’ll spend lots of time learning to do integrals below. Here’s the answer:

iM = −ig + iCg2

(
log

Λ2

s
+ log

Λ2

t
+ log

Λ2

u

)
+O(g3)

If you must know, C = 1
32π2 .

Observables can be predicted from other observables. Again, the boldface

statement might sound like some content-free tweet from a boring philosophy-of-science

twitter feed, but actually it’s a very important thing to remember here.

What is g? As Zee’s Smart Experimentalist says, it is just a letter in some theorist’s

lagrangian, and it doesn’t help anyone to write physical quantities in terms of it. Much

more useful would be to say what is the scattering amplitude in terms of things that

can be measured. So, suppose someone scatters φ particles at some given (s, t, u) =

(s0, t0, u0), and finds for the amplitude iM(s0, t0, u0) = −igP where P is for ‘physical’.7

This we can relate to our theory letters:

− igP = iM(s0, t0, u0) = −ig + iCg2L0 +O(g3) (1.6)

where L0 ≡ log Λ2

s0
+ log Λ2

t0
+ log Λ2

u0
. (Note that quantities like gP are often called

gR where ‘R’ is for ‘renormalized,’ whatever that is.) I emphasize that this much we

would have to do to make useful predictions, even if there were no specter of infinity

or dependence on a fictitious cutoff.

Renormalization. Now here comes the big gestalt shift: Solve this equation (1.6)

7You might hesitate here about my referring to the amplitude M as an ‘observable’. The difficult

and interesting question of what can actually be measured in experiments can be decoupled a bit from

this discussion. If you want to worry about this, see the beginning of Schwartz, chapter 18.
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for the stupid letter g

−ig = −igP − iCg2L0 +O(g3) (1.7)

= −igP − iCg2
PL0 +O(g3

P ). (1.8)

where to obtain (1.8) we used (1.7) in the g2 term and in the remainder term: O(g3) =

O(g3
P ). (We will use this trick all the time below.) Now we can eliminate g from the

discussion:

iM(s, t, u) = −ig + iCg2L+O(g3)
(1.8)
= −igP − iCg2

PL0 + iCg2
PL+O(g3

P )

= −igP + iCg2
P

(
log

s0

s
+ log

t0
t

+ log
u0

u

)
+O(g3

P ). (1.9)

This expresses the amplitude at any momenta (within the range of validity of the

theory!) in terms of measured quantities, gP , s0, t0, u0. The cutoff Λ is gone! Just like

in our parable in §1.1, it was eliminated by letting the coupling vary with it, g = g(Λ),

according to (1.8). We’ll say a lot more about how to think about that dependence.

Renormalized perturbation theory. To slick up this machinery, consider the

following Lagrangian density (in fact the same as (1.5), with m = 0 for simplicity):

L = −1

2
φ2φ− gP

4!
φ4 − δg

4!
φ4 (1.10)

but written in terms of the measured coupling gP , and some as-yet-undetermined ‘coun-

terterm’ δg. Then (with some foresight, we treat δg ∼ g2
P , since its job is to cancel a

term of this order)

M(s, t, u) = −gP − δg − Cg2
P

(
log

s

Λ2
+ log

t

Λ2
+ log

u

Λ2

)
+O(g3

P ).

If, in order to enforce the renormalization condition M(s0, t0, u0) = −gP , we choose

δg = −g2
PC

(
log

s0

Λ2
+ log

t0
Λ2

+ log
u0

Λ2

)
then we find

M(s, t, u) = −gP − Cg2
P

(
log

s

s0

+ log
t

t0
+ log

u

u0

)
+O(g3

P )

– all the dependence on the unknown cutoff is gone, we satisfy the observational demand

M(s0, t0, u0) = −gP , and we can predict the scattering amplitude (and others!) at any

momenta.
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The only price is that the ‘bare coupling’ g depends on the cutoff, and becomes

infinite if we pretend that there is no cutoff. Happily, we didn’t care about g anyway.

We can just let it go.

The step whereby we were able to absorb all the dependence on the cutoff into

the bare coupling constant involved some apparent magic. It is not so clear that the

same magic will happen if we study the next order O(g3
P ) terms, or if we study other

amplitudes. A QFT where all the cutoff dependence to all orders can be removed with

a finite number of counterterms is called ‘renormalizable’. As we will see, such a field

theory is less useful because it allows us to pretend that it is valid up to arbitrarily high

energies. The alternative, where we must add more counterterms (such as something

like δ6
Λ2φ

6) at each order in perturbation theory, is called an effective field theory, which

is a field theory that has the decency to predict its regime of validity.

1.3 Towards quantum corrections to the Coulomb force law

As a prelude to studying loops in QED, and to make clear what is at stake, let me

fill in some of the details of the leading-order calculation. By studying scattering of

an electron from a heavy charged fermion (a muon is convenient) we will reconstruct

the cross section for scattering off a Coulomb potential (named after Mott). This will

emphasize the fact that the tree-level process is classical. Then we’ll figure out how it

is corrected by other QED processes.

Crossing symmetry. If you look at a Feynman diagram on its side (for example

because someone else fails to use the convention that time goes to the left) it is still a

valid amplitude for some process. Similarly, dragging particles between the initial and

final state also produces a valid amplitude. Making this relation precise can save us

some work. The precise relation for dragging an incoming particle into the final state,

so that it is an outgoing antiparticle, is:

iMf←iA(pf ; pi, pA) = = iMĀf←i(pf , k = −pA; pi) = .

(If you must, note that this is another sense in which an antiparticle is a particle

going backwards in time.) If A is a spinor particle, the sum relations for particles and

antiparticles are different:∑
r

ur(p)ūr(p) = /p+m,
∑
r

vr(k)v̄r(k) = /k −m = −(/p+m)
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– after accounting for k = −pA, they differ by an overall sign. Hence we must also ap-

pend a fermion sign factor (−1)number of fermions shuffled between in and out in the unpolarized

scattering probability. Here is an example. [End of Lecture 2]

µ+µ− ← e+e− . For example, consider the process µ+µ− ← e+e−. To try to keep

things straight, I’ll call the electron momenta p, p′ and the muon momenta k, k′, since

that won’t change under crossing. The amplitude is

iMµ+µ−←e+e− =

=
(
−ieūs(k)γµvs

′
(k′)
)

muons

−i
(
ηµν − (1−ξ)qµqν

q2

)
q2

(
−iev̄r

′
(p′)γνur(p)

)
electrons

(1.11)

(with q ≡ p + p′ = k + k′). If we don’t keep track of the spins, then we must average

over initial states and sum over final states, so the unpolarized scattering probability

density is
1

4

∑
spins

|M|2 spinor traces
=

1

4

e4

s2
EµνMµν ,

where the tensor objects Eµν ,Mµν come respectively from the electron and muon lines,

1

4
Eµν = pµp

′
ν + p′µpν − ηµν(p · p′ +m2

e)

1

4
Mµν = kµk

′
ν + k′µkν − ηµν(k · k′ +m2

µ),

and they are contracted by the photon line, with s = q2 = (p+ p′)2.

Spinor trace ninjutsu. In case you missed it, here is how to evaluate the spinor

traces:

The trace is cyclic: tr (AB · · ·C) = tr (CAB · · ·) . (1.12)

Our gamma matrices are 4× 4, so tr1 = 4.

trγµ = tr
(
γ5
)2
γµ

(1.12)
= trγ5γµγ5 {γ

5,γµ}=0
= −trγµ = 0. (1.13)

The same trick shows that the trace of any odd number of gammas vanishes. The idea

is that an odd number of gammas is a map between the L and R subspaces, so it has

only off-diagonal terms in the Weyl basis.

trγµγν
clifford

= −trγνγµ + 2ηµνtr1
(1.12)
= −trγµγν + 8ηµν =⇒ trγµγν = 4ηµν . (1.14)
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trγµγνγργσ = 4 (ηµνηρσ + ησµηνρ − ηµρηνσ) . (1.15)

Why is this? The completely antisymmetric bit vanishes because it is proportional to

γ5 which is traceless (by the same argument as (1.13)). If any pair of indices is the

same then the other two must be too by (1.14). If adjacent pairs are the same they can

just square to one and we get +1; if alternating pairs are the same (and different from

each other) then we must move them through each other with the anticommutator. If

they are all the same we get 4.

trγµγνγργσγ5 = −4iεµνρσ.

e−µ− ← e−µ− . To get from our previous work the amplitude (tree level, so far)

for the process e−µ− ← e−µ−, we must move the incoming positron line to an outgoing

electron line, and move the outgoing antimuon line to an incoming muon line (hence

the sign in σ will be (−1)number of fermions shuffled between in and out = (−1)2 = 1). Relative

to the amplitude for µ+µ− ← e+e− (1.11), we must replace the relevant vs with us for

the initial/final antiparticles that were moved into final/initial particles, and we must

replace p′ → −p′, k′ → −k′:

iM = = (−ieū(p′)γµu(p)))electrons

−i
(
ηµν −

(1−ξ)qtµqtν
q2
t

)
q2
t

(−ieū(k)γνu(k′))muons(1.16)

with qt ≡ p − p′ = k′ − k, so that the Mandelstam variable is t = q2
t . After the spin

sum,

1

4

∑
s,s′,r,r′

|M|2 ≡ 1

4

e4

t2
EµνMµν = 4

e4

t2
(−pµp′ν − p′µpν − ηµν(−p · p′ +m2

e))

·
(
−kµk′ν − k′µkν − ηµν(−k · k′ +m2

µ)
)

(1.17)

Here Eµν and Mµν are the factors associated with the electron and muon lines respec-

tively. The end result is obtained from the result for e+e− → µ+µ−. by the permutation

(s, t, u)→ (t, u, s) of the Mandelstam variables.

Payoff: the Mott formula. Recall other ways of figuring out the scattering cross

section from a Coulomb potential from a point charge of charge ze.

We think about scattering from a fixed electrostatic potential A0 = ze
r

and do classical

mechanics. I can never remember how this goes. Instead, let’s just scatter an electron
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off a heavy charge, such as a muon. If the charge of the heavy object were z times that

of the electron, we would multiply the amplitude by z and the cross section by z2.

Kinematics. ‘Heavy’ here means that we can ap-

proximate the CoM frame by its rest frame, and

its initial and final energy as k′0 = mµ, k0 =√
m2
µ + ~k2 = mµ + 1

2
~k2/mµ + · · · ' mµ. Also, this

means the collision is approximately elastic. In the

diagram of the kinematics at right, c ≡ cos θ, s ≡
sin θ.

This means that the muon-line tensor factor Mµν in (1.17) simplifies dramatically:

−1

4
Mµν ' kµk

′
ν + k′µkν − ηµν

k · k′ −m2
µ︸ ︷︷ ︸

'm2
µ−m2

µ=0

 ' δµ0δν02m2
µ.

In the electron line, we get

− p · p′ +m2
e = −E2 + ~p2 cos θ +m2

e = −~p2(1− cos θ). (1.18)

So

EµνMµν = −8m2
µE

00 = 32m2
µ(2E2 + η00(p · p′ −m2

e)) (1.19)

(1.18)
= 32m2

µ(2E2 − ~p2(1− cos θ))

trig
= 32m2

µ2(E2 − ~p2 sin2 θ

2
)
β2≡~p2/E2

= 64m2
µE

2(1− β2 sin2 θ

2
) .

Note that t = (p− p′)2 = −2~p2(1− cos θ).

Now we can use the formula that we found for the cross section with a two-body

final state, in the CoM frame (for the derivation, see these notes, §4.8):

dσ =
1

vrel

1

2EA2EB

(
1

4

∑
spins

|M|2
)
dΠLI . (1.20)

So the differential cross section is

dσ =
1

vrel︸︷︷︸
=β

1

2E

1

2mµ

z2e4

t2
64

4
m2
µE

2(1− β2 sin2 θ

2
)
dΩ

16π2

p

Etotal

Etotal∼mµ
=

4Ep

β

z2α2(1− β2 sin2 θ
2
)

t2
dΩ

from which we get
dσ

dΩMott
= z2α

2(1− β2 sin2 θ
2
)

4β2~p2 sin4 θ
2

. (1.21)
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• The Mott formula is independent of the muon mass, which may as well be infinite.

• If we take β � 1 in this formula we get the Rutherford formula.

• Notice that it blows up at θ → 0. This is a symptom of the long-range nature of

the Coulomb potential, i.e. the masslessness of the photon.

• The calculation we’ve done characterizes the tree-level scattering of point par-

ticles, with no substructure. We can apply it to scattering of electrons off of

protons, if E is small enough. For larger E � me, where we would have to

go back to (1.21) and redo the kinematics take into account the recoil of the

proton, but it would still describe scattering of point particles (for the result,

see Eq. (13.103) of Schwartz’s book). Actual experiments scattering electrons

off protons show an energy regime that deviates from this behavior because the

proton has substructure (it is made of quarks and gluons). It was a big surprise

that at even higher energies the tree-level pointlike scattering formula applies

again. This is a symptom of the asymptotic freedom of the quarks and gluons.

Radiative corrections. Now it’s time to think about perturbative corrections to

this cross section. Given that the leading-order calculation reproduced the classical

physics of the Coulomb potential, you can think of what we are doing as effectively

discovering (high-energy or short-distance) quantum corrections to the Coulomb law.

The diagrams we must include are these (I made the muon lines thicker and also red):

iMeµ←eµ = +




+

 +O(e6)

• What do the one-loop diagrams in the second line have in common? They have

an internal muon line. Why does this matter? When the energy going through the

line is much smaller than the muon mass, then the propagator is i(/k+mµ)

k2−m2
µ
∼ 1

mµ
and its

relative contribution is down by k/mµ � 1. So let’s neglect these for now.

• Why don’t we include diagrams like ? The LSZ formula tells us
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that their effects on the S-matrix are accounted for by the wavefunction renormalization

factors Z

Seµ←eµ =
√
Ze

2√
Zµ

2

 +

( )
+ · · ·


amputated, on-shell

and in determining the locations of the poles whose residues are the S-matrix elements.

We’ll take care of these when we talk about the electron self-energy.

• Notice that the one-loop amplitudes are suppressed relative to the tree level am-

plitude by two factors of e, hence one factor of the fine structure constant α = e2

4π
.

Their leading effects on the cross section come from

σ ∼
∣∣∣ +

( )
+ · · ·

∣∣∣2 ∼ σtree +O(α3)

from the cross term between the tree and one-loop amplitudes.

In the above discussion, we encounter all three ‘primitive’ one-loop divergent am-

plitudes of QED, which we’ll study in turn:

• electron self-energy: describing the difficulty for electron propagation

posed by its emitting and reabsorbing photons

• vertex correction: whose name is self-explanatory

• vacuum polarization (photon self-energy): describing the difficulty

for photon propagation posed by its turning into electron-positron pairs.
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1.4 Electron self-energy in QED

Let’s think about the electron two-point function in momentum space:

G̃(2)(p) = + · · ·

= + · · ·

(1.22)

We’ve grouped the diagrams according to their behavior when we divide input and

output by cutting a single line. A diagram that cannot be divided by cutting a single

line is called one-particle irreducible (1PI). The blue blob is defined to be the sum of

all 1PI diagrams. We will denote the 1PI two-point function by

−iΣ(p) ≡

a blob with nubbins; for fermions with conserved particle number, the nubbins carry

arrows indicating the particle number flow. Let me call the tree level propagator

= iS(p) ≡
i(/p+m0)

p2 −m2
0 + iε

=
i

/p−m0

– notice that I added a demeaning subscript to the notation for the mass appearing in

the Lagrangian. Foreshadowing.

Note that S,G,Σ are all matrices in the spinor space. The full momentum-space

two point function is then:

G̃(2)(p) = iS + iS (−iΣ(p)) iS + iS (−iΣ(p)) iS (−iΣ(p)) iS + · · ·
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= iS (1 + ΣS + ΣSΣS + · · ·) = iS
1

1− ΣS

=
i

/p−m0

1

1− Σ 1
/p−m0

=
i

/p−m0 − Σ(/p)
. (1.23)

A comment about summing this infinite series:

1 + x+ x2 + · · · = 1

1− x
. (1.24)

You probably know that a geometric series has a radius of convergence of 1. This is

because the function to which it sums has a pole at x = 1, and the radius of convergence

is at most the distance to the nearest singularity.

On the other hand, there is a theorem of complex analysis that if two functions

analytic in an open set D agree in D then they are the same. This is the basis for

analytic continuation.

The LHS of (1.24) is not a priori defined when |x| > 1. The relation (1.24) therefore

gives a useful meaning to it in this regime.

Are you worried about these manipulations because Σ and S are matrices in the

spinor indices? Don’t be: they are both made entirely from the matrix /p, and therefore

they commute; we could do these manipulations in the eigenbasis of /p.

So let’s write Σ = Σ(/p). This fully corrected propagator has a pole at

/p = m1 ≡ m01 + Σ(m1) . (1.25)

This means that the actual mass of the particle is this new quantity m. But what is

m (it is called the ‘renormalized mass’)? To figure it out, we need to know about Σ.

In QED we must study Σ in perturbation theory. As you can see from (1.22), the

leading (one-loop) contribution is

− iΣ2(p) = = (−ie)2

∫
d̄4k γµ

i(/k +m0)

k2 −m2
0 + iε

γν
−iηµν

(p− k)2 − µ2 + iε
. (1.26)

Notice that I am relying on the Ward identity to enforce the fact that only the trans-

verse bit of the photon propagator matters. Also, I added a mass µ for the photon

as an IR regulator. We must keep the external momentum p arbitrary, since we don’t

even know where the mass-shell is! Note that it is OK to use the bare propagator in

the integrand of (1.26) since we are neglecting other corrections at the next order.
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Finally, I can’t put it off any longer: how are we going to do this loop-momentum

integral?

Step 1: Feynman parameter trick. It is a good idea to consider the integral∫ 1

0

dx
1

(xA+ (1− x)B)2
=

∫ 1

0

dx
1

(x(A−B) +B)2
=

1

A−B
−1

x(A−B) +B

∣∣∣∣x=1

x=0

=
1

A−B

(
− 1

A
+

1

B

)
=

1

AB
.

This allows us to combine the denominators into one:

I =
1

k2 −m2
0 + iε︸ ︷︷ ︸

B

1

(p− k)2 − µ2 + iε︸ ︷︷ ︸
A

=

∫ 1

0

dx
1

(x ((p2 − 2pk + k2)− µ2 + iε) + (1− x)(k2 −m2
0 + iε))

2

Step 2: Now we can complete the square

I =

∫ 1

0

dx
1(k − px︸ ︷︷ ︸

≡`

)2 −∆ + iε

2

with

`µ ≡ kµ − pµx, ∆ ≡ +p2x2 + xµ2 − xp2 + (1− x)m2
0 = xµ2 + (1− x)m2

0 − x(1− x)p2.

Step 3: Wick rotate. Because of the iε we’ve been dutifully car-

rying around, the poles of the `0 integral don’t occur in the first

and third quadrants of the complex `0 plane. (And the integrand

decays at large |`0|.) This means that we can rotate the contour

to euclidean time for free: `0 ≡ i`4. Equivalently: the integral

over the contour at right vanishes, so the real time contour gives

the same answer as the (upward-directed) Euclidean contour.
Notice that `2 = −`2

E. Altogether

−iΣ2(p) = −e2

∫
d̄4`

∫ 1

0

dx
N

(`2 −∆ + iε)2
= −e2

∫ 1

0

dxi

∫
d̄4`E

N

(`2
E + ∆)

2

where the numerator is [End of Lecture 3]

N = γµ
(
/̀+ x/p+m0

)
γµ = −2

(
/l + x/p

)
+ 4m0.

Here I used two Clifford algebra facts: γµγµ = 4 and γµ/pγµ = −2/p. Think about the

contribution from the term with /̀ in the numerator: everything else is invariant under

rotations of `

d̄4`E =
1

(2π)4
dΩ3`

3d` =
dΩ3

(2π)4
`2d`

2

2
,
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so this averages to zero. The rest is of the form (using
∫
S3 dΩ3 = 2π2)

Σ2(p) = e2

∫ 1

0

dx

∫
`2d`2

2

(2π2)

(2π)4

2(2m0 − x/p)
(`2 + ∆)2

=
e2

8π2

∫ 1

0

dx(2m0 − x/p)J (1.27)

with

J =

∫ ∞
0

d`2 `2

(`2 + ∆)2 .

In the large ` part of the integrand this is∫ Λ d`2

`2
∼ log Λ. (1.28)

You knew this UV divergence was coming. To be more precise, let’s add zero:

J =

∫
d`2

(
`2 + ∆

(`2 + ∆)2 −
∆

(`2 + ∆)2

)
=

∫ ∞
0

d`2

(
1

`2 + ∆
− ∆

(`2 + ∆)2

)
= ln(`2 + ∆)

∣∣∞
`2=0

+
∆

`2 + ∆

∣∣∣∣∞
`2=0

= ln(`2 + ∆)
∣∣∞
`2=0
− 1.

Recall that

∆ = xµ2 + (1− x)m2
0 − x(1− x)p2 ≡ ∆(µ2).

Pauli-Villars regularization. Here is a convenient fiction: when you exchange

a photon, you also exchange a very heavy particle, with mass m2 = Λ2, with an extra

(−1) in its propagator. This means that (in this Pauli-Villars regulation scheme) the

Feynman rule for the wiggly line is instead

 −iηµν

(
1

k2 − µ2 + iε
− 1

k2 − Λ2 + iε

)
= −iηµν

(
µ2 − Λ2

(k2 − µ2 + iε) (k2 − Λ2 + iε)

)
This goes like 1

k4 at large k, so the integrals are more convergent. Yay.

Notice that the contribution from the Pauli-Villars photon to tree-level amplitudes

goes like | 1
k2−Λ2 |

Λ�k∼ 1
Λ2 (where k is the momentum going through the photon line,

determined by the external momenta), which innocuously vanishes as Λ→∞.

Remembering that the residue of the pole in the propagator is the probability for

the field operator to create a particle from the vacuum, you might worry that this is

a negative probability, and unitarity isn’t manifest. This particle is a ghost. However,

29



we will choose Λ so large that the pole in the propagator at k2 = Λ2 will never be

accessed and we’ll never have external Pauli-Villars particles. We are using this as a

device to define the theory in a regime of energies much less than Λ.

To accomplish the change we made requires adding a new vector field with mass

Λ and a wrong-sign kinetic term (to give the wrong-sign propagator), with the same

coupling to charged particles as the photon field. The quanta of this field are the heavy

photon particles. You shouldn’t take the regulated theory too seriously. For example,

the wrong-sign kinetic terms for the PV fields means that very wiggly configurations

will be energetically favored rather than suppressed by the Hamiltonian. It will not

make much sense non-perturbatively.

I emphasize that this regulator is one possibility of many. They each have their

drawbacks. They all break scale invariance. Nice things about PV are that it is Lorentz

invariant and gauge invariant; the bad thing is it’s not unitary. What’s wrong with the

hard cutoff on Euclidean momenta that we wrote in (1.28)? As we’ll discuss further

below, it violates gauge invariance. This is a disaster because a gauge transforma-

tion is supposed to relate two descriptions of the same state; violating this invariance

means adding degrees of freedom. A class of regulators that make perfect sense non-

perturbatively is the lattice (as in the model with masses on springs). The price is that

it really messes up the spacetime symmetries.

Applying PV to the self-energy integral amounts to the replacement

J  J∆(µ2) − J∆(Λ2)

=
[(

ln
(
`2 + ∆(µ2)

)
− 1
)
−
(
ln
(
`2 + ∆(Λ2)

)
− 1
)]∣∣∞

`=0

= ln
`2 + ∆(µ2)

`2 + ∆(Λ2)

∣∣∣∣∞
`=0

= ln 1/1− ln
∆(µ2)

∆(Λ2)
= ln

∆(Λ2)

∆(µ2)
.

Notice that we can take advantage of our ignorance of the microphysics to make the

cutoff (the PV scale Λ) as big as we like and thereby simplify our lives:

∆(Λ2) = xΛ2 + (1− x)m2
0 − x(1− x)p2 Λ�everyone

≈ xΛ2.

Finally then

Σ2(/p)PV =
α

2π

∫ 1

0

dx(2m01 − x/p) ln
xΛ2

xµ2 + (1− x)m2
0 − x(1− x)p2

. (1.29)

(Note that p2 = /p2, so it is appropriate to regard this as just a function of /p.)

Having arrived at this regulated expression for the self-energy we need to “impose

a renormalization condition,” i.e. introduce some observable physics in terms of which
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to parametrize our answers. We return to (1.25): the shift in the mass as a result of

this one-loop self-energy is

δm ≡ m−m0 = Σ2(/p = m) +O(e4) = Σ2(/p = m0) +O(e4)

=
α

2π

∫ 1

0

dx 1(2− x)m0 ln
xΛ2

xµ2 + (1− x)m2
0 − x(1− x)m2

0︸ ︷︷ ︸
=xµ2+(1−x)2m2

0≡f(x,m0,µ)

=
α

2π

∫ 1

0

dx (2− x)m0

 ln
Λ2

m2
0︸ ︷︷ ︸

divergent

+ ln
xm2

0

f(x,m0, µ)︸ ︷︷ ︸
relatively small


≈ α

2π

(
2− 1

2

)
m0 ln

Λ2

m2
0

=
3α

4π
m0 ln

Λ2

m2
0

. (1.30)

In the penultimate step (with the ≈), we’ve neglected the finite bit (labelled ‘relatively

small’) compared to the logarithmically divergent bit: we’ve already assumed Λ� all

other scales in the problem.

Mass renormalization. Now the physics input: The mass of the electron is 511

keV (you can ask how we measure it and whether the answer we get depends on the

resolution of the measurement, and indeed there is more to this story; this is a low-

energy answer, for example we could make the electron go in a magnetic field and

measure the radius of curvature of its orbit and set mev
2/r = evB/c), so

511 keV ≈ me = m0

(
1 +

3α

4π
ln

Λ2

m2
0

)
+O(α2). (1.31)

In this equation, the LHS is a measured quantity. In the correction on the RHS α ≈ 1
137

is small, but it is multiplied by ln Λ2

m0
which is arbitrarily large. This means that the

bare mass m0, which is going to absorb the cutoff dependence here, must actually be

really small. (Notice that actually I’ve lied a little here: the α we’ve been using is

still the bare charge; we will need to renormalize that one, too, before we are done.) I

emphasize: m0 and the other fake, bare parameters in L depend on Λ and the order of

perturbation theory to which we are working and other theorist bookkeeping garbage;

me does not. At each order in perturbation theory, we eliminate m0 using (1.31) (with

the RHS computed to the appropriate order), and write our predictions in terms of me.

It is not too surprising that the mass of the electron includes such contributions: it

must be difficult to travel through space if you are constantly emitting and re-absorbing

photons.

Wavefunction renormalization. The actual propagator for the electron, near
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the electron pole is

G̃(2)(p) =
i

/p−m0 − Σ(/p)

p∼m
' iZ

/p−m
+ regular terms. (1.32)

The residue of the pole at the electron mass is no longer equal to one, but rather Z.

To see what Z actually is at this order in e2, Taylor expand near the pole

Σ(/p)
Taylor

= Σ(/p = m) +
∂Σ

∂/p
|/p=m(/p−m) + · · ·

pert th
= Σ2(/p = m0) +

∂Σ2

∂/p
|/p=m0(/p−m0) + · · ·+O(e4)

So then (1.32) becomes

G̃(2)(p)
p∼m∼ i

/p−m− ∂Σ
∂/p
|m0(/p−m)

=
i(

/p−m
) (

1− ∂Σ
∂/p
|m0

) (1.33)

So that

Z =
1

1− ∂Σ
∂/p
|m0

' 1 +
∂Σ

∂/p
|m0 ≡ 1 + δZ

and at leading nontrivial order

δZ =
∂Σ2

∂/p

∣∣∣∣
/p=m0

(1.29)
=

α

2π
1

∫ 1

0

dx

(
−x ln

xΛ2

f(x,m0, µ)
+ (2− x)m2

0

−2x(1− x)

f(x,m0, µ)

)
= − α

4π

(
ln

Λ2

m2
0

+ finite

)
. (1.34)

Here f = f(x,m0, µ) is the same quantity defined in the second line of (1.30). We’ll

see below that the cutoff-dependence in δZ plays a crucial role in making the S matrix

(for example for the eµ → eµ process we’ve been discussing) cutoff-independent and

finite, when written in terms of physical variables.
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1.5 Big picture interlude

OK, I am having a hard time just pounding away at one-loop QED. Let’s take a break

and think about the self-energy corrections in scalar field theory. Then we will step

back and think about the general structure of short-distance senstivity in (relativistic)

QFT, before returning to the QED vertex correction and vacuum polarization.

1.5.1 Self-energy in φ4 theory

[Zee §III.3] Let’s return to the φ4 theory in D = 3 + 1 for a moment. The Mφφ←φφ

amplitude is not the only place where the cutoff appears.

Above we added a counterterm of the same form as the φ4 term in the Lagrangian.

Now we will see that we need counterterms for everybody:

L = −1

2

(
φ2φ+m2

Pφ
2
)
− gP

4!
φ4 − δg

4!
φ4 − 1

2
δZφ2φ− 1

2
δm2φ2.

(I may sometimes forget to put the subscripts P on the physical quantities below.)

Here is a way in which φ4 theory is weird: At one loop there is no wavefunction

renormalization. That is,

δΣ1(k) = = −ig

∫ Λ

d̄4q
i

q2 −m2 + iε
= δΣ1(k = 0) ∼ gΛ2

which is certainly quadratically divergent, but totally independent of the external mo-

mentum. This means that when we Taylor expand in k (as we just did in (1.33)), this

diagram only contributes to the mass renormalization. Demanding that the pole in the

propagator occurs at p2 = m2, we must set δm2 = −δΣ1.

So let’s see what happens if we keep going:

δΣ2(k) = =
(−ig)2

3!

∫
d̄4p

∫
d̄4qiD0(p)iD0(q)iD0(k−p−q) ≡ I(k2,m,Λ).

Here iD0(p) ≡ i
p2−m2+iε

is the free propagator (the factor of i is for later convenience),

and we’ve defined I by this expression. The fact that I depends only on k2 is a

consequence of Lorentz invariance. Counting powers of the loop momenta, the short-

distance bit of this integral is of the schematic form
∫ Λ d8P

P 6 ∼ Λ2, also quadratically

divergent, but this time k2-dependent, so there will be a nonzero δZ ∝ g2. As we just
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did for the electron self-energy, we should Taylor expand in k. (We’ll learn more about

why and when the answer is analytic in k2 at k = 0 later.) The series expansion in k2

(let’s do it about k2 = 0 ∼ m2 to look at the UV behavior) is

δΣ2(k2) = A0 + k2A1 + k4A2 + · · ·

where A0 = I(k2 = 0) ∼ Λ2. In contrast, dimensional analysis says A1 = ∂
∂k2 I|k2=0 ∼∫

d8P
P 8 ∼ Λ0+ ∼ ln Λ has two fewer powers of the cutoff. After that it’s clear sailing:

A2 =
(
∂
∂k2

)2
I|k2=0 ∼

∫ Λ d8P
P 10 ∼ Λ−2 is finite as we remove the cutoff, and so are all the

later coefficients.

If instead the physical pole were at a nonzero value of the mass, we should Taylor

expand about k2 = m2
P instead8:

D−1(k) = D−1
0 (k)−Σ(k) = k2−m2

0−
(
δΣ1(m2

P ) + A0

)︸ ︷︷ ︸
≡a∼Λ2

−(k2−m2
P )A1−(k2−m2

P )2A2+· · ·

(1.35)

where now An ≡ 1
n!

(
∂
∂k2

)n
Σ2(k2)|k2=m2

P
. The · · · here includes both higher orders in g

(O(g3)) and higher powers of k2, i.e. higher derivative terms.

Therefore, the propagator is

D(k) =
1

(1− A1)(k2 −m2
P )

+ · · · = Z

k2 −m2
P

+ · · ·

with

Z =
1

1− A1

, m2
P = m2 + a

where a was defined in (1.35).

Some points to notice: • δZ = A1. (The higher-order bits we have no right to keep,

since they are the same order as the 3-loop correction.)

• The contributions An≥2(k2)n can be reproduced by counterterms of the form

Anφ2nφ. Had they been cutoff dependent we would have needed to add such (cutoff-

dependent) counterterms.

• The mass-squared of the scalar field in D = 3+1 is quadratically divergent, while

the mass of the spinor was only log divergent. This UV sensitivity of scalar fields is

ubiquitous9 (see the homework) and is the source of many headaches.

8Actually there is another diagram at two loops, namely . Like the one-loop diagram, this

does not depend on the external momentum, and so just renormalizes the mass. It should be included

in A0.
9At least for most regulators. We’ll see that dim reg is special.
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• On the term ‘wavefunction renormalization’: who is φ? Also just a theorist’s

letter. Sometimes (in condensed matter) it is defined by some relation to observation

(like the height of a wave in a mattress), in high energy theory not so much. Classically,

we fixed its (multiplicative) normalization by setting the coefficient of φ2φ to one. If

we want to restore that convention after renormalization, we can make a redefinition of

the field φP ≡ Z−1/2φ. This is the origin of the term ‘wavefunction renormalization’.

A slightly better name would be ‘field renormalization’, but even better would be just

‘kinetic term renormalization’.

Renormalized perturbation theory revisited. The full story for the renormal-

ized perturbation expansion in φ4 theory is then

L =
1

2
(∂φ)2 − 1

2
m2
Pφ

2 − gP
4!
φ4 + Lct

with

Lct =
1

2
δZ (∂φ)2 − 1

2
δm2φ2 − δg

4!
φ4.

Here are the instructions for using it: The Feynman rules are as before: the coupling

and propagator are

= −igP , =
i

k2 −m2
P + iε

(1.36)

but the terms in Lct (the counterterms) are treated as new vertices, and treated per-

turbatively:

= −iδg, = −i(δZk2 + δm2).

All integrals are regulated, in the same way (whatever it is). The counterterm couplings

δg, δZ, δm
2 are determined iteratively, as follows: given the δN−1s up to O(gNP ), we fix

each one δ = δN−1 + gNP ∆δN +O(gN+1
P ) by demanding that (1.36) are actually true up

to O(gN+1
P ). This pushes the cutoff dependence back into the muck a bit further.

I say this is the full story, but wait: we didn’t try to compute amplitudes with more

than four φs (such as 3 ← 3 scattering of φ quanta). How do we know those don’t

require new counterterms (like a φ6 term, for example)? [End of Lecture 4]

1.5.2 Where is the UV sensitivity?

[still Zee §III.3, Peskin ch. 10. We’ll follow Zee’s discussion pretty closely for a bit.]

Given some process in a relativistic, perturbative QFT, how do we know if it will

depend on the cutoff? We’d like to be able answer this question for a theory with
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scalars, spinors, vectors. Here’s how: First, look at each diagram A (order by order in

the loop expansion). Define the ‘superficial’ degree of divergence of A to be

DA ≡ [A|all coupling constants = 1], (1.37)

its engineering dimension, ignoring the contributions from coupling constants. In the

limit that Λ � all other scales, we must then have A ∼ ΛDA (in the absence of

cancellations). A log divergent amplitude has DA = 0 (sometimes it’s called DA = 0+).

Let’s start simple, and study the φ4 theory in D = 4. Consider a connected diagram

A with BE external scalar lines. I claim that DA = 4−BE.

Why doesn’t it (explicitly) depend on any other data of the diagram, such as

BI ≡ # of internal scalar lines (i.e., propagators)

V ≡ # of φ4 vertices

L ≡ # of loops

? We can understand this better using two facts of graph theory and some

power counting. I recommend checking my claims below with an example,

such as the one at right.

BI = 8

BE = 4

V = 5

L = 4

Graph theory fact #1: These quantities are not all independent. For a connected

graph,

L = BI − (V − 1). (1.38)

Proof10: Imagine placing the vertices on the page and adding the propagators one at a

time. You need V − 1 internal lines just to connect up all V vertices. After that, each

internal line you add necessarily adds one more loop. �

Another way to think about this fact makes clear that L = # of loops = # of

momentum integrals. Before imposing momentum conservation at the vertices, each

internal line has a momentum which we must integrate:
∏BI

α=1

∫
d̄Dqα. We then stick a

δ(D)(
∑
q) for each vertex, but one of these gives the overall momentum conservation

δ(D)(kT ), so we have V − 1 fewer momentum integrals. For the example above, (1.38)

says 4 = 8− (5− 1).

Graph theory fact #2: Each external line comes out of one vertex. Each internal

line connects two vertices. Altogether, the number of ends of lines sticking out of

vertices is

BE + 2BI = 4V

10I learned this one from my class-mate M.B. Schulz.
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where the RHS comes from noting that each vertex has four lines coming out of it (in

φ4 theory). In the example, this is 4 + 2 · 8 = 4 · 5. So we can eliminate

BI = 2V −BE/2. (1.39)

Now we count powers of momenta:

A Λ�everyone∼
L∏
a=1

∫ Λ

d̄Dka

BI∏
α=1

1

k2
α

.

Since we are about to apply the definition of the superficial degree of divergence, we

ignore the factors from coupling constants. Since we are interested in the UV structure,

I’ve set the mass to zero, as well as all the external momenta. The only scale left in

the problem is the cutoff, so the dimensions of A must be made up by the cutoff:

DA = [A] = DL− 2BI
(1.38)
= BI(D − 2)−D(V − 1)

(1.39)
= D +

2−D
2

BE + V (D − 4).

If we set D = 3 + 1 = 4, we get DA = 4 − BE, as claimed. Notice that with BE = 2

we indeed reproduce DA = 2, the quadratic divergence in the mass renormalization,

and with BE = 4 we get DA = 0, the log divergence in the 2 ← 2 scattering. This

pattern continues: with more than four external legs, DA = 4−BE < 0, which means

the cutoff dependence must go away when Λ→ 0. This is illustrated by the following

diagram with BE = 6:

∼
∫ Λ d̄4P

P 6
∼ Λ−2.

So indeed we don’t need more counterterms for higher-point interactions in this theory.

Why is the answer independent of V in D = 4? This has the dramatic consequence

that once we fix up the cutoff dependence in the one-loop diagrams, the higher orders

have to work out, i.e. it strongly suggests that the theory is renormalizable. 11

11Why isn’t it a proof of renormalizability? Consider the following integral:

I =

∫ Λ d4p

(p2 +m2)5

∫ Λ

d4k.

According to our method of counting, we would say DI = 4 + 4− 10 = −2 and declare this finite and

cutoff-independent. On the other hand, it certainly does depend on the physics at the cutoff, since

has a finite part ∼ m−6. (I bet it is possible to come up with more pathological examples.) The rest

of the work involving ‘nested divergences’ and forests is in showing that the extra structure in the

problem prevents things like I from being Feynman amplitudes.
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Before we answer this, let’s explore the pattern a bit more. Suppose we include

also a fermion field ψ in our field theory, and suppose we couple it to our scalar by a

Yukawa interaction:

Sbare[φ, ψ] = −
∫
dDx

(
1

2
φ
(
2 +m2

φ

)
φ+ ψ̄ (−/∂ +mψ)ψ + yφψ̄ψ +

g

4!
φ4

)
.

To find the degree of divergence in an amplitude in this model, we have to independently

keep track of the number fermion lines FE, FI , since a fermion propagator has dimension

[1
/p
] = −1, so that DA = [A] = DL − 2BI − FI . The number of ends-of-fermion-lines

is 2Vy = FE + 2FI and the number of ends-of-boson-lines is Vy + 4Vg = BE + 2BI .

The number of loops is L = BI + FI − (Vy + Vg − 1). Putting these together (I used

Mathematica) we get

DA = D + (D − 4)

(
Vg +

1

2
Vy

)
+BE

(
2−D

2

)
+ FE

(
1−D

2

)
. (1.40)

Again in D = 4 the answer is independent of the number of vertices! Is there something

special about four spacetime dimensions?

To temper your enthusiasm, consider adding a four-fermion interaction: G(ψ̄ψ)(ψ̄ψ)

(or maybe GV (ψ̄γµψ)(ψ̄γµψ) or GA(ψ̄γµγ5ψ)(ψ̄γµγ
5ψ) or any other pile of gamma

matrices in between, with the indices contracted). When you redo this calculation on

the homework, you’ll find that in D = 4 a diagram (for simplicity, one with no φ4 or

Yukawa interactions) has

DA = 4− (1)BE −
(

3

2

)
FE + 2VG,

where VG is the number of insertions of the 4-fermion term. This dependence on the

number of four-fermi vertices means that there are worse and worse divergences as

we look at higher-order corrections to a given process. Even worse, it means that for

any number of external lines FE no matter how big, there is a large enough order in

perturbation theory in G where the cutoff will appear! This means we need δn(ψ̄ψ)n

counterterms for every n, which we’ll need to fix with physical input. This is a bit

unappetizing, and such an interaction is called “non-renormalizable”. However, when

we remember that we only need to make predictions to a given precision (so that we

only need to go to a finite order in this process) we will see that such theories are

nevertheless quite useful.

So why were those other examples independent of V ? It’s because the couplings

were dimensionless. Those theories were classically scale invariant (except for the mass

terms).
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1.5.3 Naive scale invariance in field theory

[Halpern] Consider a field theory of a scalar field φ in D spacetime dimensions, with

an action of the form

S[φ] =

∫
dDx

(
1

2
∂µφ∂

µφ− gφp
)

for some constants p, g. Which value of p makes this scale invariant? (That is: when

is g dimensionless, and hence possibly the coupling for a renormalizable interaction.)

Naive mass dimensions:

[S] = [~] = 0, [x] ≡ −1, [dDx] = −D, [∂] = 1

The kinetic term tells us the engineering dimensions of φ:

0 = [Skinetic] = −D + 2 + 2[φ] =⇒ [φ] =
D − 2

2
.

Notice that the D = 1 case agrees with our quantum mechanics counting from §1.1.

Quantum field theory in D = 1 spacetime dimensions is quantum mechanics.

Then the self-interaction term has dimensions

0 = [Sinteraction] = −D + [g] + p[φ] =⇒ [g] = D − p[φ] = D + p
2−D

2

We expect scale invariance when [g] = 0 which happens when

p = pD ≡
2D

D − 2
,

i.e. the scale invariant scalar-field self-interaction in D spacetime dimensions is φ
2D
D−2 .

D 1 2 3 4 5 6 ... D ∞
[φ] −1

2
0 1

2
1 3/2 2 ... D−2

2
∞

scale-inv’t p ≡ pD −2 ∞? 6 4 10/3 3 ... 2D
D−2

2

? What is happening in D = 2? The field is dimensionless, and so any power of

φ is naively scale invariant, as are more complicated interactions like gij(φ)∂µφ
i∂µφj,

where the coupling g(φ) is a function of φ. This allows for scale-invariant non-linear
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sigma models, where the fields are coordinates on a curved manifold with metric ds2 =

gijdφ
idφj.

In dimensions where we get fractional powers, this isn’t so nice.

Notice that the mass term ∆S =
∫
dDxm

2

2
φ2 gives

0 = −D + 2[m] + 2[φ] =⇒ [m] = 1 ∀D <∞

– it’s a mass, yay.

What are the consequences of this engineering-dimensions calculation in QFT? For

D > 2, an interaction of the form gφp has

[g] = D · pD − p
pD


< 0 when p > pD, non-renormalizable or irrelevant

= 0 when p = pD, renormalizable or marginal

> 0 when p < pD, super-renormalizable or relevant.

(1.41)

Consider the ‘non-renormalizable’ case. Suppose we calculate in QFT some quantity

f (say a scattering amplitude) with [f ] as its naive dimension, in perturbation theory

in g, e.g. by Feynman diagrams. We’ll get:

f =
∞∑
n=0

gncn

with cn independent of g. So

[f ] = n[g] + [cn] =⇒ [cn] = [f ]− n[g]

So if [g] < 0, cn must have more and more powers of some mass (inverse length) as

n increases. What dimensionful quantity makes up the difference? Sometimes it is

masses or external momenta. But generically, it gets made up by UV divergences (if

everything is infinite, dimensional analysis can fail, nothing is real, I am the walrus).

More usefully, in a meaningful theory with a UV cutoff, ΛUV , the dimensions get

made up by the UV cutoff, which has [ΛUV ] = 1. Generically (i.e. in the absence of

cancellations): cn = c̃n (ΛUV )−n[g], where c̃n is dimensionless, and n[g] < 0 – it’s higher

and higher powers of the cutoff.

Consider the renormalizable (classically scale invariant) case: [cn] = [f ], since [g] =

0. But in fact, what you’ll get is something like

cn = c̃n logν(n)

(
ΛUV

ΛIR

)
,

where ΛIR is an infrared cutoff or a mass or external momentum, [ΛIR] = 1. Some

classically scale invariant examples (so that m = 0 and the bare propagator is 1/k2)
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where you can see that we get logs from loop amplitudes:

φ4 in D = 4: φ6 in D = 3:

φ3 in D = 6: In D = 2, even the propagator for a massless

scalar field has logs:

〈φ(x)φ(0)〉 =

∫
d̄2k

e−ikx

k2
∼ log

|x|
ΛUV

.

The terms involving ‘renormalizable’ in (1.41) are somewhat old-fashioned and come

from a high-energy physics point of view where the short-distance physics is unknown,

and we want to get as far as we can in that direction with our limited knowledge (in

which case the condition ‘renormalizability’ lets us get away with this indefinitely –

it lets us imagine we know everything). The latter terms are natural in the opposite

situation (like condensed matter physics) where we know some basically correct micro-

scopic description but want to know what happens at low energies. Then an operator

like 1
M24φ

28 whose coefficient is suppressed by some large mass scale M is irrelevant

for physics at energies far below that scale. Inversely, an operator like m2φ2 gives a

mass to the φ particles, and matters very much (is relevant) at energies E < m. In the

marginal case, the quantum corrections have a chance to make a big difference.

[End of Lecture 5]

1.6 Vertex correction in QED and soft photons

[Peskin chapter 6, Schwartz chapter 17, Zee chapter III.6] Back to work on QED. The

vertex correction has some great physics payoffs:

• We’ll cancel the cutoff dependence we found in the S matrix from δZ.

• We’ll compute g−2 (the anomalous magnetic moment) of the electron, the locus

of some of the most precise agreement between theory and experiment. (Actually

the agreement is so good that it’s used as the definition of the fine structure

constant. But a similar calculation gives the leading anomalous magnetic moment

of the muon.)

• We’ll see that the exclusive differential cross section
(
dσ
dΩ

)
eµ←eµ that we’ve been
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considering is not really an observable. Actually it is infinity!12 The key word

here is ‘exclusive,’ which means that we demand that the final state is exactly one

electron and one muon and absolutely nothing else. Think for a moment about

how you might do that measurement.

This is an example of an IR divergence. While UV divergences mean we’re

overstepping our bounds (by taking too seriously our Lagrangian parameters or

our knowledge of short distances), IR divergences mean we are asking the wrong

question.

To get started, consider the following class of diagrams.

=

≡ iM = ie2 (ū(p′)Γµ(p, p′)u(p))
1

q2
ū(K ′)γµu(K) (1.42)

The shaded blob is the vertex function Γ. The role of the light blue factors is just to

make and propagate the photon that hits our electron; let’s forget about them. Denote

the photon momentum by q = p′ − p. We’ll assume that the electron momenta p, p′

are on-shell, but qµ is not, as in the eµ scattering process. Then q2 = 2m2 − 2p′ · p.

Before calculating the leading correction to the vertex Γµ = γµ +O(e2), let’s think

about what the answer can be. It is a vector made from pµ, (p′)µ, γµ and m, e and

numbers. It can’t have any γ5 or εµνρσ by parity symmetry of QED. So on general

grounds we can organize it as

Γµ(p, p′) = Aγµ +B(p+ p′)µ + C(p− p′)µ (1.43)

where A,B,C are Lorentz-invariant functions of p2 = (p′)2 = m2, p · p′, /p, /p′. But, for

example, /pγµu(p) = (mγµ − pµ)u(p) which just mixes up the terms; really A,B,C are

just functions of the momentum transfer q2. Gauge invariance, in the form of the Ward

identity, says that contracting the photon line with the photon momentum should give

zero:

0
Ward
= qµū(p′)Γµu(p)

(1.43)
= ū(p′)

A /q︸︷︷︸
= /p′−/p

ū(p′)...u(p)
= m−m=0

+B (p+ p′) · (p− p′)︸ ︷︷ ︸
=m2−m2=0

+Cq2

u(p)

12More accurately, the exclusive cross section is zero; the one-loop correction is minus infinity, which

is perturbation theory’s clumsy attempt to correct the finite tree level answer to make it zero.
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Therefore 0 = Cq2ū(p′)u(p) for general q2 and general spinors, so C = 0. This is the

moment for the Gordon identity to shine:

ū(p′)γµu(p) = ū(p′)

(
pµ + p

′µ

2m
+

iσµνqν
2m

)
u(p)

(where σµν ≡ i
2
[γµ, γν ]) can be used to eliminate the p+p′ term13. The Gordon identity

shows that the QED interaction vertex ū(p′)γµu(p)Aµ contains a magnetic moment bit

in addition to the p+ p′ term (which is there for a charged scalar field).

It is then convenient (and conventional) to parametrize the vertex in terms of the

two form factors F1,2:

Γµ(p, p′) = γµF1(q2) +
iσµνqν

2m
F2(q2). (1.44)

This little monstrosity has the complete information about the coupling of the electron

to the electromagnetic field, such as for example a background electromagnetic field.

It is a parametrization of the matrix elements of the current between two one-electron

states, incorporating the fact of gauge invariance.

The first term at zero momentum eF1(q2 = 0) is the electric charge of the electron

(if you don’t believe it, use the vertex (1.44) to calculate the Coulomb field of the

electron; there are some details on page 186 of Peskin). Since the tree-level bit of

F1 is 1, if by the letter e here we mean the actual charge, then we’d better include

counterterms (Lct 3 ψ̄δeγµAµψ) to make sure it isn’t corrected: F1(0) = 1.

The magnetic moment of the electron is the coefficient ~µ of Ṽ (q) = −~µ · ~B(q) +

... in the non-relativistic effective potential. Comparing the non-relativistic limit of

ū(p′)Γiu(p)Ai(q) = −~µ · ~B(q) + ..., shows that (see Peskin p. 187)

~µ = g
e

2m
~S,

where ~S ≡ ξ† ~σ
2
ξ is the electron spin. Comparing with the vertex function, this says

that the g factor is

g = 2(F1(0) + F2(0)) = 2 + 2F2(0) = 2 +O(α).

We see that the anomalous magnetic moment of the electron is 2F2(q2 = 0).

13Actually this is why we didn’t include a σµν term. You could ask: what about a term like

σµν(p+p′)ν? Well, there’s another Gordon identity that relates that to things we’ve already included:

ū2σµν(p1 + p2)νu1 = iū2 (qµ − (m1 −m2)γµ)u1.

It is proved the same way: just use the Dirac equation /p1
u1 = m1u1, ū2/p2

= ū2m2 and the Clifford

algebra. We are interested here in the case where m1 = m2.
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Now that we have some expectation about the form of the answer, and some ideas

about what it’s for, we sketch the evaluation of the one-loop QED vertex correction:

= −(e)3

∫
d̄4k ū(p′)γν

/k
′
+me

(k′)2 −m2
e

γµ
/k +me

k2 −m2
e

γρu(p)· ηνρ
(p− k)2 −m2

γ

with k′ ≡ k + q.

Step (1) Feynman parameters again. The one we showed before can be rewritten

more symmetrically as:

1

AB
=

∫ 1

0

dx

∫ 1

0

dy δ(x+ y − 1)
1

(xA+ yB)2

Now how can you resist the generalization14:

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
2

(xA+ yB + zC)3

14Peskin outlines a proof by induction of the whole family of such identities on page 190. But here’s

a simpler proof using Schwinger parameters. You’ll agree that

1

A
=

∫ ∞
0

ds e−sA. (1.45)

Applying this identity to each factor gives

1

A1A2 · · ·An
=

∫ ∞
0

ds1 · · ·
∫ ∞

0

dsn e
−
∑n
i=1 siAi .

Now use scaling to set τ ≡
∑n
i=1 si, and xi ≡ si/τ . Then

1

A1A2 · · ·An
=

∫ ∞
0

dττn−1
n∏
i=1

∫ 1

0

dxiδ

(
n∑
i=1

xi − 1

)
e−τ

∑
i xiAi .

Now do the integral over τ , using
∫∞

0
dττn−1e−τX = (n−1)!

Xn (differentiate (1.45) wrt A), to arrive at

1

A1A2 · · ·An
=

n∏
i=1

∫ 1

0

dxiδ

 n∑
j=1

xj − 1

 (n− 1)!(∑
j xjAj

)n .
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So, set A = (k′)2 −m2
e, B = k2 −m2

e, C = (p− k)2 −m2
γ (with the appropriate iεs), so

that the integral we have to do is∫
d̄4kNµ

(k2 + k · (· · · ) + · · · )3
.

Step (2) Complete the square, ` = k − zp+ xq to get
∫

d̄4`Nµ

(`2−∆)3 where

∆ = −xyq2 + (1− z)2m2 + zm2
γ. (1.46)

The `-dependence in the numerator is either 1 or `µ or `µ`ν . In the integral over `, the

second averages to zero, and the third averages to ηµν`2 1
4
. As a result, the momentum

integrals we need are just∫
d̄D`

(`2 −∆)m
and

∫
d̄D` `2

(`2 −∆)m
.

Right now we only need D = 4 and m = 3, but it turns out to be quite useful to think

about them all at once. Like in our discussion of the electron self-energy diagram, we

can evaluate them by Wick rotating (which changes the denominator to `2
E + ∆) and

going to polar coordinates. This gives:∫
d̄D`

(`2 −∆)m
= (−1)m

i

(4π)D/2
Γ
(
m− D

2

)
Γ(m)

(
1

∆

)m−D
2

. (1.47)

∫
d̄D` `2

(`2 −∆)m
= (−1)m−1D

2

i

(4π)D/2
Γ
(
m− D

2
− 1
)

Γ(m)

(
1

∆

)m−D
2
−1

. (1.48)

Notice that these integrals are not equal to infinity when the parameter D is not an

integer. This is the idea behind dimensional regularization.

Step (0) But for now let’s persist in using the Pauli Villars regulator. (I call this

step (0) instead of (3) because it should have been there all along.) Here this means we

subtract from the amplitude the same quantity with m2
γ replaced by Λ2. The dangerous

bit comes from the `2 term we just mentioned, since m −D/2 − 1 = 3 − 4/2 − 1 = 0

means logs.

The numerator is

Nµ = ū(p′)γν
(
/k + /q +me

)
γµ (/k +me) γνu(p)

= −2 (Aū(p′)γµu(p) + Bū(p′)σµνqνu(p) + Cū(p′)qµu(p)) (1.49)

where

A = −1

2
`2 + (1− x)(1− y)q2 + (1− 4z + z2)m2
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B = imz(1− z)

C = m(z − 2)(y − x) . (1.50)

The blood of many men was spilled to arrive at these simple expressions (actually

most of the algebra is done explicitly on page 319 of Schwartz). Now you say: but you

promised there would be no term like C because of the Ward identity. Indeed I did

and indeed there isn’t, because C is odd in x↔ y while everything else is even, so this

term integrates to zero.

The first term (with A) is a correction to the charge of the electron and will be UV

divergent. More explicitly, we get, using Pauli-Villars,∫
d̄4`

(
`2(

`2 −∆mγ

)3 −
`2

(`2 −∆Λ)3

)
=

i

(4π)2
ln

∆Λ

∆mγ

.

The other bits are finite, and we ignore the terms that go like negative powers of Λ.

More on this cutoff dependence soon. But first something wonderful:

1.6.1 Anomalous magnetic moment

The second term B contains the anomalous magnetic moment:

F2(q2) =
2m

e
· (the term with B )

=
2m

e
4e3 ·m ·

∫
dxdydzδ(x+ y + z − 1)z(1− z)

∫
d̄4`

(`2 −∆)3︸ ︷︷ ︸
= −i

32π2∆

=
α

π
m2

∫
dxdydzδ(x+ y + z − 1)

z(1− z)

(1− z)2m2 − xyq2
. (1.51)

The correction to the magnetic moment is the long-wavelength bit of this:

F2(q2 = 0) =
α

π
m2

∫ 1

0

dz

∫ 1−z

0

dy
z

(1− z)m2
=

α

2π
.

g = 2 +
α

π
+O(α2).

A rare opportunity for me to plug in numbers: g = 2.00232.

1.6.2 IR divergences mean wrong questions.

There is a term in the numerator from the Aγµ bit∫
d̄4`

(`2 −∆)3
= c

1

∆
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(with c = − i
32π2 again), but without the factor of z(1 − z) we had in the magnetic

moment calculation. It looks like we’ve gotten away without having to introduce a UV

regulator here, too (so far). But now look at what happens when we try to do the

Feynman parameter integrals. For example, at q2 = 0, we get (if we had set mγ = 0)∫
dxdydzδ(x+ y + z − 1)

m2(1− 4z + z2)

∆
= m2

∫ 1

dz

∫ 1−z

0

dy
−2 + 2(1− z) + (1− z)2

(1− z)2m2

=

∫ 1

dz
−2

(1− z)
+ finite, (1.52)

which diverges at the upper limit of integration. In fact it’s divergent even when q2 6= 0.

This is a place where we actually need to include the photon mass, mγ, for our own

safety. The fact that restoring mγ 6= 0 in (1.46) regulates this divergence is one way to

see that it is indeed an IR divergence.

The (IR singular bit of the) vertex (to O(α)) is of the form

Γµ = γµ
(

1− α

2π
fIR(q2) ln

(
−q2

mγ
2

))
+ stuff which is finite as mγ → 0. (1.53)

Notice that the IR divergent stuff depends on the electron momenta p, p′ only through

q, the momentum of the photon. So it looks like we are led to conclude(
dσ

dΩ

)
µe←µe

=

(
dσ

dΩ

)
Mott

(
1− α

π
fIR(q2) ln

(
−q2

mγ
2

))
+O

(
α2
)

which blows up when we remove the fake photon mass mγ → 0. Notice that for t-

channel exchange, −q2 > 0, so the argument of the log is positive, the cross-section is

real. But notice that the one-loop correction is not only infinite, but negative infinity,

which simply cannot happen from the definition of the cross section. This is perturba-

tion theory’s way of telling us that the answer is 1−α ·∞+O(α2) ' 0 – the putatively

small corrections from radiative effects are actually trying to make the answer zero.

[Schwartz §20.1] I wanted to just quote the above result for (1.53) but I lost my

nerve, so here is a bit more detail leading to it. The IR dangerous bit comes from the

second term in A above. That is,

F1(q2) = 1 + f(q2) + δe +O(α2)

with

f(q2) =
e2

8π2

∫ 1

0

dxdydzδ(x+y+z−1)

(
ln
zΛ2

∆
+
q2(1− x)(1− y) +m2

e(1− 4z + z2)

∆

)
.
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δe here is a counterterm coefficient for the ΨγµAµΨ vertex.

We can be more explicit if we consider −q2 � m2
e so that we can ignore the electron

mass everywhere. Then we would choose the counterterm δe so that

1 = F1(0) =⇒ δe = −f(0)
me/q→0→ − e2

8π2

1

2
ln

Λ2

m2
γ

.

And the form of f(q2) is

f(q2)|me=0 =
e2

8π2

∫
dxdydzδ(x+ y + z − 1)

ln
(1− x− y)Λ2

∆︸ ︷︷ ︸
IR finite

+
q2(1− x)(1− y)

−xyq2 + (1− x− y)m2
γ


F1(q2)|me=0 = 1− e2

16π2

(
ln2 −q2

m2
γ

+ 3 ln
−q2

m2
γ

)
+ finite.

In doing the integrals, we had to remember the iε in the propagators, which can be

reproduced by the replacement q2 → q2 +iε. This ln2(q2/mγ) is called a Sudakov double

logarithm. Notice that taking differences of these at different q2 will not make it finite.

Diversity and inclusion to the rescue. Before you throw up your hands in

despair, I would like to bring to your attention another consequence of the massless-

ness of the photon: It means real (as opposed to virtual) photons can be made with

arbitrarily low energy. But a detector has a minimum triggering energy: the detector

works by particles doing some physical something to stuff in the detector, and it has

a finite energy resolution – it takes a finite amount of energy Ec for those particles

to do the stuff. This means that a process with exactly one e and one µ in the final

state cannot be distinguished from a process ending in eµ plus a photon of

arbitrarily small energy, such as would result from (final-state radiation)

or (initial-state radiation). This ambiguity is present for any process with

external charged particles.

[End of Lecture 6]
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Being more inclusive, then, we cannot distinguish amplitudes of the form

ū(p′)M0(p′, p)u(p) ≡ −i


 ,

from more inclusive amplitudes like

−i




= ū(p′)γµ e
/p′+/k−meM0(p′, p)u(p)ε?µ(k) + ū(p′)M0(p′, p) e

/p−/k−meγ
µu(p)ε?µ(k) .

Now, by assumption the extra outgoing photon is real (k2=0) and it is soft, in the sense

that k0 < Ec, the detector cutoff. Notice that this condition is not Lorentz invariant,

but depends on a choice of frame. If we boost a soft photon to a frame at .99999c,

it is no longer soft. But the experiment we are trying to describe is also not Lorentz

invariant: the condition k0 < Ec is imposed in the rest frame of the detector.

Because the photon is soft, k0 < Ec, we can approximate the numerator of the

second term as(
/p− /k +me

)
γµu(p) '

(
/p+me

)
γµu(p)

Clifford
= (2pµ + γµ

(
−/p+me

)
)u(p)︸ ︷︷ ︸

=0

= 2pµu(p).

In the denominator we have e.g. (p− k)2 −m2
e = p2 −m2

e − 2p · k + k2 ∼ −2p · k since

the electron is on shell p2 = m2
e and so is the photon k2 = 0. Therefore

M (eµ+ one soft γ ← eµ) = eū(p′)M0(p′, p)u(p)

(
p′ · ε?

p′ · k + iε
− p · ε?

p · k − iε

)
(1.54)

This is bremsstrahlung. Before we continue this calculation to find the inclusive

amplitude that a real detector actually measures, let’s pause to relate the previous

expression to some physics we know. Where have we seen this kind of expression

p
′µ

p′ · k + iε
− pµ

p · k − iε
≡ 1

ie
j̃µ(k)

before? Notice that the iε are different because one comes from final state and one

from initial. Well, this object is the Fourier transform j̃µ(k) =
∫
d4x e+ikxjµ(x) of the

current

jµ(x) = e

∫
dτ
dyµ

dτ
δ(4)(x− y(τ))
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associated with a particle which executes a piecewise linear motion 15

yµ(τ) =

{
pµ

m
τ, τ < 0

p
′µ

m
τ, τ > 0

.

This is a good approximation to the motion a free particle which experiences a sudden

acceleration; sudden means that the duration of the pulse is short compared to ω−1

for any frequency we’re going to measure. The electromagnetic radiation that such

an accelerating charge produces is given classically by Maxwell’s equation: Ãµ(k) =

− 1
k2 j̃

µ(k).

I claim further that the factor α
π
fIR(q2) = α

π
ln
(
−q2

m2

)
(which entered our lives in

(1.53)) arises classically as the number of soft photons produced by such a process in

each decade of wavenumber. You can figure this out by plugging Ãµ(k) = − 1
k2 j̃

µ(k)

into the electromagnetic energy 1
2

∫
d3x (E2 +B2) =

∫
d̄3k~ωknk. (Note that the in-

tegral over k here actually diverges; this is an artifact of the approximation that the

momentum change is instantaneous.) See Peskin §6.1 for help.

The cross section for eµ to go to eµ plus a single soft photon is then(
dσ

dΩ

)Eγ<Ec
µeγsoft←µe

=

(
dσ

dΩ

)
Mott

e2

∫ Ec

0

d̄3k

2Ek︸ ︷︷ ︸
γ phase space

∣∣∣∣p · ε?p · k
− p′ · ε?

p′ · k

∣∣∣∣2 Ek=|~k|∼
∫

0

d3k

k3
=∞. (1.55)

This is another IR divergence. (One divergence is bad news, but two is an opportunity

for hope.) Just like we must stick to our UV regulators like religious zealots, we must

cleave tightly to the consistency of our IR regulators: we need to put back the photon

mass:

Ek =

√
~k2 +m2

γ

which means that the lower limit of the k integral gets cut off at mγ:∫ Ec

0

dk

Ek
=

(∫ mγ

0

+

∫ Ec

mγ

)
dk√

k2 +mγ
2
∼
∫ mγ

0

dk

mγ︸ ︷︷ ︸
=1

+

∫ Ec

mγ

dk

k︸ ︷︷ ︸
ln Ec
mγ

.

15Check it:∫
d4xjµ(x)e+ikx = e

∫
dτ
dyµ(τ)

dτ
eik·y(τ) = e

∫ ∞
0

dτ
p
′µ

m
e
i
(
k·p′
m +iε

)
τ

+ e

∫ 0

−∞
dτ
pµ

m
ei(

k·p
m −iε)τ = j̃µ(k).

Notice that the iε are convergence factors in the Fourier transforms.
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Being careful about the factors, the actual cross section measured by a detector with

energy resolution Ec is16(
dσ

dΩ

)observed

=

(
dσ

dΩ

)
eµ←µe

+

(
dσ

dΩ

)Eγ<Ec
µeγsoft←µe

+O(α3)

=

(
dσ

dΩ

)
Mott

1−α
π
fIR(q2) ln

(
−q2

mγ
2

)
︸ ︷︷ ︸

vertex correction

+
α

π
fIR(q2) ln

(
E2
c

mγ
2

)
︸ ︷︷ ︸

soft photons


=

(
dσ

dΩ

)
Mott

(
1− α

π
fIR(q2) ln

(
−q2

E2
c

))

The thing we can actually measure is independent of the IR regulator photon mass mγ,

and finite when we remove it. On the other hand, it depends on the detector resolution.

Like in the plot of some kind of Disney movie, an apparently-minor character whom

you may have been tempted to disregard as an ugly detail has saved the day.

I didn’t show explicitly that the coefficient of the log is the same function fIR(q2).

In fact this function is fIR(q2) = log(−q2/m2), so the product fIR ln q2 ∼ ln2 q2 is

the Sudakov double logarithm. A benefit of the calculation that shows that the same

fIR appears in both places (Peskin chapter 6.5) is that it also shows that this pattern

persists at higher order in α: there is a ln2(q2/mγ
2) dependence in the two-loop vertex

correction, and a matching − ln2(E2
c /mγ

2) term in the amplitude to emit two soft

photons. There is a 1
2!

from Bose statistics of these photons. The result exponentiates,

and we get

e−
α
π
f ln(−q2/mγ2)e+α

π
f ln(E2

c/mγ
2) = e−

α
π
f ln(−q2/E2

c ).

You may be bothered that I’ve made all this discussion about the corrections from

the electron line, but said nothing about the muon line. But the theory should make

sense even if the electron and muon charges Qe, Qm were different, so the calculation

should make sense term-by-term in an expansion in Qm.

Some relevant names for future reference: The name for the guarantee that this

always works in QED is the Bloch-Nordsieck theorem. Closely-related but more serious

issues arise in QCD, the theory of quarks and gluons; this is the beginning of the story

of jets (a jet is some IR-cutoff dependent notion of a QCD-charged particle plus the

cloud of stuff it carries with it) and parton distribution functions.

16Notice that we add the cross-sections, not the amplitudes, for these processes with different final

states. Here’s why: even though we don’t measure the existence of the photon, something does: it

gets absorbed by some part of the apparatus or the rest of the world and therefore becomes entangled

with some of its degrees of freedom; when we fail to distinguish between those states, we trace over

them, and this erases the interference terms we would get if we summed the amplitudes.
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Sketch of exponentiation of soft photons. [Peskin §6.5] In the following we

will just keep track of the bits that diverge when mγ → 0. Consider a diagram with n

soft external photons with momenta {kα}nα=1, summed over ways of distributing them

on an initial and final electron line:

n∑
nf=0

= ū(p′)iM0u(p)en
n∏

α=1

(
p
′µα

p′ · kα
− pµα

p · kα

)
εα?µα ≡ An.

Here the two terms in each factor is just as in (1.54), one term from initial and one from

final-state emission; expanding the product gives the sum over nf = n−ni, the number

coming from the final-state line. From this expression, we can make a diagram with a

soft-photon loop by picking an initial line α and a final line β, setting kα = −kβ ≡ k,

erasing their polarization vectors, tying them together with a photon propagator and

summing over k:

= An−2
e2

2

∫
d̄4k

−iηρσ
k2 −m2

γ

(
p′

p′ · k
− p

p · k

)ρ(
p
′

−p′ · k
− p

−p · k

)σ

(1.56)

The factor of 1
2

accounts for the symmetry under exchange of α ↔ β. The last two

factors are the approximate electron propagators attached to the new internal photon

line. For the case of n = 2, this is the whole story, and this is

ūiM0u ·X =

  ·
 

soft part

(where here ‘soft part’ means the part which is singular in mγ) from which we conclude

that

X = − α

2π
fIR(q2) ln

(
−q2

m2
γ

)
+ finite.

The integral is the same as the one in (1.55) (and it is done in Peskin, page 201).

Taking the most IR-divergent bit with m virtual soft photons (order αm) for each m

gives

Mvirtual soft =
∞∑
m=0


 =

︸ ︷︷ ︸
iM0


∑
m

1

m!
Xm

︸ ︷︷ ︸
eX
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where the 1/m! is a symmetry factor from interchanging the virtual soft photons.

Notice that this verifies my claim that the −∞ in the one-loop answer is perturbation

theory’s way of trying to make the cross-section zero: since X
mγ→0→ −∞, dσexclusive ∝

e2X mγ→0→ 0.

Now consider the case of one real external soft (E ∈ [mγ, Ec]) photon in the final

state. The cross section is

dσ1γ =

∫
dΠ
∑
pols

εµε?ν︸ ︷︷ ︸
=−ηµν

MµM?
ν

(1.54)
=

∫
dΠ0|ū(p′)M0u(p)|2

∫ Ec d̄3k

2Ek
(−ηµν) e2

(
p′

p′ · k
− p

p · k

)µ(
p
′

−p′ · k
− p

−p · k

)ν
≡ dσ0Y,

Y =
α

π
fIR(q2) ln

(
E2
c

m2
γ

)
.

(This was actually exactly the same integral as in the virtual-photon calculation in

(1.56).) Therefore, the exclusive cross section, including contributions of soft real

photons gives
∞∑
n=0

dσnγ = dσ0

∑
n

1

n!
Yn = dσ0e

Y.

Here the n! is because the final state contains n identical bosons.

Putting the two effects together gives the promised cancellation of mγ dependence

to all orders in α:

dσ = dσ0e
2XeY

= dσ0 exp

(
−α
π
fIR(q2) ln

−q2

m2
γ

+
α

π
fIR(q2) ln

E2
c

m2
γ

)
= dσ0 exp

(
−α
π
fIR(q2) ln

−q2

E2
c

)
.

This might seem pretty fancy, but unpacking the sum we did, the basic statement

is that the probability of finding n photons with energy in a given (low-energy) range

[E−, E+] is

P[E−,E+] =
1

n!
λne−λ, λ =

α

π
fIR(q2) ln

E+

E−
= 〈n〉 =

〈
n2
〉
− 〈n〉2

a Poisson distribution. This is just what one finds in a coherent state of the radiation

field.
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1.6.3 Some magic from gauge invariance of QED

We found that the self-energy of the electron gave a wavefunction renormalization

factor

Ze = 1 +
∂Σ

∂/p
|/p=m0 +O(e4) = 1− α

4π
ln

Λ2

m2
+ finite +O(α2).

We care about this because there is a factor of Ze in the LSZ formula for an S-matrix

element with two external electrons. On the other hand, we found a cutoff-dependent

correction to the vertex eγµF1(q2) of the form

F1(q2) = 1 +
α

4π
ln

Λ2

m2
+ finite +O(α2).

Combining these together

Seµ←eµ =
(√

Ze

)2 (
+
( )

+ · · ·
)

=

(
1− α

4π
ln

Λ2

m2
+ · · ·

)
e2ū(p′)

(
γµ
(

1 +
α

4π
ln

Λ2

m2
+ · · ·

)
+ α

iσµνqν
2m

)
u(p)

the UV divergence from the vertex cancels the one in the self-energy. Why did this have

to happen? During our discussion of the IR divergences, I mentioned a counterterm δe
for the vertex. But how many counterterms do we get here? Is there a point of view

that makes this cancellation obvious? Notice that the · · · multiplying the γµ term still

contain the vacuum polarization diagram, which is our next subject, and which may

be (is) cutoff dependent. Read on.

1.7 Vacuum polarization

[Zee, III.7] We’ve been writing the QED lagrangian as

L = ψ̄
(
/∂ + ie /̃A−m

)
ψ − 1

4
F̃µνF̃

µν .

I’ve put tildes on the photon field because of what’s about to happen: Suppose we

rescale the definition of the photon field eÃµ ≡ Aµ, eF̃µν ≡ Fµν . Then the coupling e

moves to the photon kinetic term:

L = ψ̄
(
/∂ + i /A−m

)
ψ − 1

4e2
FµνF

µν .

With this normalization, instead of measuring the coupling between electrons and

photons, the coupling constant e measures the difficulty a photon has propagating

through space:

〈AµAν〉 ∼
−iηµνe

2

q2
.
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None of the physics is different, since each internal photon line still has two ends on a

ψ̄ /Aψ vertex.

But from this point of view it is clear that the magic of the previous subsection is

a consequence of gauge invariance, here’s why: the demand of gauge invariance relates

the coefficients of the ψ̄ /∂ψ and ψ̄ /Aψ terms17. Therefore, any counterterm we need for

the ψ̄ /∂ψ term (which comes from the electron self-energy correction and is traditionally

called δZ2) must be the same as the counterterm for the ψ̄ /Aψ term (which comes from

the vertex correction and is called δZ1). No magic, just gauge invariance.

A further virtue of this reshuffling of the factors of e (emphasized by Zee on page

205) arises when we couple more than one species of charged particle to the electromag-

netic field, e.g. electrons and muons or, more numerously, protons: once we recognize

that charge renormalization is a property of the photon itself, it makes clear that quan-

tum corrections cannot mess with the ratio of the charges. A deviation from −1 of

the ratio of the charges of electron and proton as a result of interactions might seem

plausible given what a mess the proton is, and would be a big deal for atoms. Gauge

invariance forbids it.

Just as we defined the electron self-energy (amputated 2-point function) as =

−iΣ(/p) (with two spinor indices implied), we define the photon self-energy as

+iΠµν(q
2) ≡ IPI = +O(e4)

(the diagrams on the RHS are amputated). It is a function of q2 by Lorentz symmetry.

(The reason for the difference in sign is that the electron propagator is +i
/p−m while the

photon propagator is −iηµν
q2 .) Because of Lorentz symmetry, we can parametrize the

answer as

Πµν(q2) = A(q2)ηµν +B(q2)qµqν .

The Ward identity says

0 = qµΠµν(q2) =⇒ 0 = Aqν +Bq2qν =⇒ B = −A/q2.

Let A ≡ Πq2 so that

Πµν(q2) = Π(q2)q2

(
ηµν − qµqν

q2

)
︸ ︷︷ ︸

=∆µν
T

.

17Notice that the gauge transformation of the rescaled Aµ is Aµ → Aµ+∂µλ(x), ψ(x)→ eiqλ(x)ψ(x)

so that Dµψ ≡ (∂ + qiA)µ ψ → eiqλDµψ where q is the charge of the field (q = −1 for the electron).

This is to be contrasted with the transformation of Ãµ → Ãµ − ∂µλ(x)/e.
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This object ∆µν
T is a projector

∆µ
T ρ∆T

ρ
ν = ∆µ

T ν (1.57)

onto modes transverse to qµ. Recall that we can take the bare propagator to be

=
−i∆T

q2

without changing any gauge-invariant physics. This is useful because then

G̃(2)(q) = + · · ·
(1.57)
=

−i∆T

q2

(
1 + iΠq2∆T

(
−i∆T

q2

)
+ iΠq2∆T

(
−i∆T

q2

)
iΠq2∆T

(
−i∆T

q2

)
+ · · ·

)
∆2
T=∆T
=

−i∆T

q2

(
1 + Π∆T + Π2∆T + · · ·

)
=

−i∆T

q2 − q2Π(q2)
. (1.58)

[End of Lecture 7]

Does the photon get a mass? If the thing I called A above q2Π(q2)
q2→0→ A0 6= 0

(that is, if Π(q2) ∼ A0

q2 or worse), then G̃
q2→0∼ 1

q2−A0
does not have a pole at q2 = 0.

If Π(q2) is regular at q2 = 0, then the photon remains massless. In order to get

such a singularity in the photon self energy Π(q2) ∼ A0

q2 we need a process like δΠ ∼
, where the intermediate state is a massless boson with propagator

∼ A0

q2 . As I will explain below, this is the Anderson-Higgs mechanism (not the easiest

way to understand it).

The Ward identity played an important role here. Why does it work for the vacuum

polarization?

qµΠµν
2 (q2) = qµ ∝ e2

∫
d̄4ptr

1

/p+ /q −m
/q

1

/p−m
γν .

But here is an identity:

1

/p+ /q −m
/q

1

/p−m
=

1

/p−m
− 1

/p+ /q −m
. (1.59)

Now, if we can redefine the integration variable p→ p+ q in the second term, the two

terms cancel.

Why do I say ‘if’? If the integral depends on the UV limit, this shift is not innocu-

ous. So we have to address the cutoff dependence.
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In addition to the (lack of) mass renormalization, we’ve figured out the electromag-

netic field strength renormalization. That is, the photon propagator near the pole at

q2 = 0 has the form G̃(2)(q) ' Zγ
−i∆T

q2 with

Zγ ≡ Z3 =
1

1− Π(0)
∼ 1 + Π2(0) +O(e4)

where Π2 stands for the O(e2) (one-loop) contribution. We need Zγ for example for

the S-matrix for processes with external photons, like Compton scattering.

Claim: If we do it right18, the cutoff dependence looks like19:

Π2(q2) =
α0

4π

−2

3
ln Λ2 + 2D(q2)︸ ︷︷ ︸

finite


where Λ is the UV scale of ignorance. The photon propagator gets corrected to

e2
0∆T

q2
 

Zγe
2
0∆T

q2
,

and Zγ = 1
1−Π(0)

blows up logarithmically if we try to remove the cutoff. You see

that the fine structure constant α0 =
e20
4π

has acquired the subscript of deprecation: we

can make the photon propagator sensible while removing the cutoff if we are willing to

recognize that the letter e0 we’ve been carrying around is a fiction, and write everything

in terms of e ≡
√
Zγe0 where e2

4π
= 1

137
is the measured fine structure constant (at low

energy). To this order, then, we write (ignoring the finite terms because we assume

Λ� everyone)

e2
0 = e2

(
1 +

α0

4π

2

3
ln Λ2

)
+O(α2). (1.60)

m0 = m+O(α0) = m+O(α). (1.61)

Since the difference between α0 and α is higher order (in either), our book-keeping is

unchanged. Inverting the relationship perturbatively, the renormalized charge is

e2 = e2
0

(
1− α0

4π

2

3
ln Λ2 +O(α2)

)
18What I mean here is: if we do it in a way that respects the gauge invariance and hence the

Ward identity. The simple PV regulator we’ve been using does not quite do that. However, an

only slightly more involved implementation, explained in Zee (pages 202-204), does. (More details in

§1.7.1.) Alternatively, we could use dimensional regularization everywhere.
19The factor in front of the ln Λ can be made to look like it does in textbooks using α = e2

4π , so that

α0

4π

(
2

3
ln Λ2

)
=

e2
0

12π2
ln Λ.
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– in QED, the quantum fluctuations reduce the charge, as you might expect from the

interpretation of this phenomenon as dielectric screening by virtual e+e− pairs.

In the example of eµ← eµ scattering, the full one-loop UV cutoff dependence then

looks like

Seµ←eµ =
(

1− α0

4π
ln Λ2 +

α0

2π
A(m0)

)
e2

0

Lµū(p′)

[
γµ
(

1 +
α0

4π
ln Λ2 +

α0

2π
(B +D) +

α0

4π

(
−2

3
ln Λ2

))
+

iσµνqν
2m

α0

2π
C(q2,m0)

]
u(p)

= e2Lµū(p′)

[
γµ
(

1 +
α

2π
(A+B +D)

)
+

iσµνqν
2m

α

2π
C

]
u(p) +O(α2) (1.62)

where Lµ is the stuff from the muon line, and A,B,C,D are finite functions of m, q2.

In the second step, two things happened: (1) we cancelled the UV divergences from

the Z-factor and from the vertex correction: this had to happen because there was no

possible counterterm. (2) we used (1.60) and (1.61) to write everything in terms of the

measured e,m. This removes the remaining cutoff dependence.

Claim: this works for all processes to order α2. For example, Bhabha scattering

gets a contribution of the form

∝ e0
1

1− Π(0)
e0 = e2.

In order to say what is A+B+D we need to specify more carefully a renormalization

scheme (other combinations of A,B,D can be changed by gauge transformations and

field redefinitions). To do that, I need to give a bit more detail about the integral.

1.7.1 Under the hood

The vacuum-polarization contribution of a fermion of mass m and charge e at one loop

is

q,µ q,ν = −
∫

d̄Dktr

(
(ieγµ)

i (/k +m)

k2 −m2
(ieγν)

i
(
/q + /k +m

)
(q + k)2 −m2

)
The minus sign out front is from the fermion loop. Some boiling, which you can find

in Peskin (page 247) or Zee (§III.7), reduces this to something manageable. The steps

involved are: (1) a trick to combine the denominators, like the Feynman trick 1
AB

=
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∫ 1

0
dx
(

1
(1−x)A+xB

)2

. (2) some Dirac algebra, to turn the numerator into a polynomial

in k, q. As Zee says, our job in this course is not to train to be professional integrators.

The result of this boiling can be written

iΠµν
2 (q) = −e2

∫
d̄D`

∫ 1

0

dx
Nµν

(`2 −∆)2

with ` = k+xq is a new integration variable, ∆ ≡ m2−x(1−x)q2, and the numerator

is

Nµν/4 = 2`µ`ν − ηµν`2 − 2x(1− x)qµqν + ηµν
(
m2 + x(1− x)q2

)
+ terms linear in `µ .

At this point I can illustrate explicitly why we can’t use the euclidean momentum

cutoff in gauge theory. With a euclidean momentum cutoff, the diagram

gives something of the form

iΠµν
2 ∝ e2

∫ Λ

d4`E
`2
Eη

µν

(`2
E + ∆)

2 + ... ∝ e2Λ2ηµν

This is NOT of the form Πµν = ∆µν
T Π(p2) promised by the Ward identity; rather it

produces a correction to the photon mass proportional to the cutoff. What happened?

Our cutoff was not gauge invariant. Oops.20

Fancier PV regularization. [Zee page 202] We can fix the problem by adding

also heavy Pauli-Villars electron ghosts. Suppose we add a bunch of them with masses

ma and couplings
√
cae to the photon. Then the vacuum polarization is that of the

electron itself plus

−
∑
a

ca

∫
d̄Dktr

(
(ieγµ)

i

/q + /k −ma

(ieγν)
i

/q −ma

)
∼
∫ Λ

d̄4k

(∑
a ca
k2

+

∑
a cam

2
a

k4
+ · · ·

)
.

So, if we take
∑

a ca = −1 we cancel the Λ2 term, and if we take
∑

a cam
2
a = −m2, we

also cancel the ln Λ term. This requires at least two PV electron fields, but so what?

Once we do this, the momentum integral converges, and the Ward identity applies, so

the answer will be of the promised form Πµν = q2Π∆µν
T . After some more boiling, the

answer is

Π2(q2) =
1

2π2

∫
dxx(1− x) ln

M2

m2 − x(1− x)q2

20Two points: How could we have predicted that the cutoff on euclidean momentum `2E < Λ2 would

break gauge invariance? Its violation of the Ward identity here is a proof, but involved some work.

The idea is that the momentum of a charged field shifts under a gauge transformation. Second: it

is possible to construct a gauge invariant regulator with an explicit UV cutoff, using a lattice. The

price, however, is that the gauge field enters only via the link variables U(x, ê) = ei
∫ x+ê
x

A where x is a

site in the lattice and ê is the direction to a neighboring site in the lattice. For more, look up ‘lattice

gauge theory’ in Zee’s index. More on this later.
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where lnM2 ≡ −
∑

a ca lnm2
a. This M plays the role of the UV scale of ignorance

thenceforth.

Notice that this is perfectly consistent with our other two one-loop PV calculations:

in those, the extra PV electrons never get a chance to run. At higher loops, we would

have to make sure to be consistent.

Dimensional regularization. A regulator which is more automatically gauge

invariant is dimensional regularization (dim reg). I have already been writing many of

the integrals in D dimensions. One small difference when we are considering this as a

regulator for an integral of fixed dimension is that we don’t want to violate dimensional

analysis, so we should really replace∫
d4` −→

∫
d4−ε`

µ̄−ε

where D = 4 − ε and µ̄ is an arbitrary mass scale which will appear in the regulated

answers, which we put here to preserve dim’l analysis – i.e. the couplings in dim

reg will have the same engineering dimensions they had in the unregulated theory

(dimensionless couplings remain dimensionless). µ̄ will parametrize our RG, i.e. play

the role of the RG scale. (It is often called µ at this step and then suddenly replaced

by something also called µ; I will instead call this µ̄ and relate it to the thing that ends

up being called µ.)

[Zinn-Justin 4th ed page 233] Dimensionally regularized integrals can be defined

systematically with a few axioms indicating how the D-dimensional integrals behave

under

1. translations
∫

d̄Dpf(p+ q) =
∫

d̄Dpf(p) 21

2. scaling
∫

d̄Dpf(sp) = |s|−D
∫

d̄Dpf(p)

3. factorization
∫

d̄Dp
∫

d̄Dqf(p)g(q) =
∫

d̄Dpf(p)
∫

d̄Dqg(q)

The (obvious?) third axiom implies the following formula for the sphere volume as a

continuous function of D:(π
a

)D/2
=

∫
dDxe−a~x

2

= ΩD−1

∫ ∞
0

xD−1dxe−ax
2

=
1

2
a−

D
2 Γ

(
D

2

)
ΩD−1 . (1.63)

This defines ΩD−1 for general D.

21Note that this rule fails for the euclidean momentum cutoff. Also note that this is the property

we needed to demonstrate the Ward identity for the vertex correction using (1.59).
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In dim reg, the one-loop vacuum polarization correction does satisfy the gauge-

invariance Ward identity Πµν = ∆µν
T q

2Π2(q2). A peek at the tables of dim reg integrals

shows that Π2 is:

Π2(q2)
Peskin p. 252

= − 8e2

(4π)D/2

∫ 1

0

dxx(1− x)
Γ(2−D/2)

∆2−D/2 µ̄ε

D→4
= − e2

2π2

∫ 1

0

dxx(1− x)

(
2

ε
− log

(
∆

µ2

)
+O(ε)

)
(1.64)

where we have introduced the heralded µ:

µ2 ≡ 4πµ̄2e−γE

where γE is the Euler-Mascheroni constant, which appears in the Taylor expansion

of the Euler gamma function; we define µ in this way so that, like Rosencrantz and

Guildenstern in Hamlet, γE both appears and disappears from the discussion in this

one scene.

In the second line of (7.6), we expanded the Γ-function about D = 4. Notice that

what was a log divergence, becomes a 1
ε

pole in dim reg. There are other singularities

of this function at other integer dimensions. It is an interesting question to ponder why

the integrals have such nice behavior as a function of D. That is: they only have simple

poles. A partial answer is that in order to have worse (e.g. essential) singularities at

some D, the perturbative field theory would have to somehow fail to make sense at

larger D.

Now we are in a position to choose a renormalization condition (also known as

a renormalization scheme), which will specify how much of the finite bit of Π gets

subtracted by the FµνF
µν counterterm. One possibility is to demand that the photon

propagator is not corrected at q = 0, i.e. demand Zγ = 1. Then the resulting one-loop

shift is

δΠ2(q2) ≡ Π2(q2)− Π2(0) =
e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)q2

m2

)
.

We’ll use this choice below. [End of Lecture 8]

Another popular choice, about which more later, is called the MS scheme, in which

Π is defined by the rule that we subtract the 1/ε pole. This means that the counterterm

is

δ
(MS)

F 2 = − e2

2π2

2

ε

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

.
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(Confession: I don’t know how to state this in terms of a simple renormalization

condition on Π2. Also: the bar in MS refers to the (not so important) distinction

between µ̄ and µ.) The resulting vacuum polarization function is

δΠ
(MS)
2 (q2) =

e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)q2

µ2

)
.

1.7.2 Physics from vacuum polarization

One class of physical effects of vacuum polarization arise from attaching the corrected

photon propagator to a static delta-function charge source. The resulting effective

Coulomb potential is the fourier transform of

Ṽ (q) =
1

q2

e2

1− Π(q2)
≡ e2

eff(q)

q2
. (1.65)

This has consequences in both IR and UV.

IR: In the IR (q2 � m2), it affects the spectra of atoms. The leading correction is

δΠ2(q) =
e2

2π2

∫
dxx(1−x) ln

(
1− q2

m2
x(1− x))

)
q�m
' e2

2π2

∫ 1

0

dxx(1−x)

(
− q2

m2
x(1− x))

)
= − q2

60π2m2

which means

Ṽ (q)
q�m
' e2

q2
+
e2

q2

(
− q2

30m2

)
+ · · ·

and hence

V (r) ' − e2

4πr
− e4

60π2m2
δ(r) + · · · ≡ V + ∆V.

This shifts the energy levels of hydrogen s-orbitals (the ones with support at the origin)

by ∆Es = 〈s|∆V |s〉 which contributes to lowering the 2S state relative to the 2P state.

This is the Lamb shift, whose observation played an important role in spurring people

to study radiative corrections in QED.

This delta function is actually a long-wavelength approximation to what is called the

Uehling potential; its actual range is 1/me, which is the scale on which Π2 varies . The

delta function approximation is a good idea for atomic physics, since 1
me
� a0 = 1

αme
,

the Bohr radius. See Schwartz p. 311 for a bit more on this.

UV: In the UV limit (q2 � m2), we can approximate ln
(

1− q2

m2x(1− x)
)
'
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ln
(
− q2

m2x(1− x)
)
' ln

(
− q2

m2

)
to get22

Π2(q2) =
e2

2π2

∫ 1

0

dxx(1−x) ln

(
1− q2

m2
x(1− x)

)
' e2

2π2

∫ 1

0

dxx(1−x) ln

(
− q2

m2

)
=

e2

12π2
ln

(
− q2

m2

)
.

Therefore, the effective charge in (1.65) at high momentum photon exchange is

e2
eff(q2)

q2�m2
e' e2

1− e2

12π2 ln
(
− q2

m2

) . (1.66)

(Remember that q2 < 0 for t-channel exchange, as in the static potential, so the

argument of the log is positive and this is real.)

Two things: if we make q2 big enough, we can make the loop correction as big as

the 1. This requires |q| ∼ 10286 eV. Good luck with that. This is called a Landau pole.

The second thing is: this perspective of a scale-dependent coupling is very valuable,

and is a crucial ingredient in the renormalization group. The value α = 1
137

is the

extreme IR value, for q � me.

22The last step is safe since the x(1 − x) suppresses the contributions of the endpoints of the x

integral, so we can treat x(1− x) as finite.
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2 Consequences of unitarity

Next I would like to fulfill my promise to show that conservation of probability guar-

antees that some things are positive (for example, Z and 1− Z, where Z is any wave-

function renormalization factor). We will show that amplitudes develop an imaginary

part when the virtual particles become real. (Someone should have put an extra factor

of i in the definition to resolve this infelicity.) We will discuss the notion of density

of states in QFT (this should be a positive number!), and in particular the notion

of the density of states contributing to a correlation function G = 〈OO〉, also known

as the spectral density of G (or of the operator O). In high-energy physics this idea

is associated with the names Källen-Lehmann and is part of a program of trying to

use complex analysis to make progress in QFT. These quantities are also ubiquitous

in the theory of condensed matter physics and participate in various sum rules. This

discussion will be a break from perturbation theory; we will say things that are true

with a capital ‘t’.

2.1 Spectral density

[Zee III.8, Appendix 2; Peskin §7.1; Xi Yin’s notes for Harvard Physics 253b] In the

following we will consider a (time-ordered) two-point function of an operator O. We

will make hardly any assumptions about this operator. We will assume it is a scalar

under rotations, and will assume translation invariance in time and space. But we

need not assume that O is ‘elementary’. This is an extremely loaded term, a useful

definition for which is: a field governed by a nearly-quadratic action. Also: try to keep

an eye out for where (if anywhere) we assume Lorentz invariance.

So, let

−iD(x) ≡ 〈0| T O(x)O†(0) |0〉 .

Notice that we do not assume that O is hermitian. Here |0〉 denotes the true vacuum,

which I called |Ω〉 before, not our shabby perturbative approximation to it. Use trans-

lation invariance to move the left operator to the origin: O(x) = eiPxO(0)e−iPx. This

follows from the statement that P generates translations 23

∂µO(x) = i[Pµ,O(x)] .

23Note that P here is a D-component vector of operators

Pµ = (H, ~P)µ

which includes the Hamiltonian – we are using relativistic notation – but we haven’t actually required

any assumption about the action of boosts.
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And let’s unpack the time-ordering symbol:

− iD(x) = θ(t) 〈0| eiPxO(0)e−iPxO†(0) |0〉+ θ(−t) 〈0| O†(0)eiPxO(0)e−iPx |0〉 . (2.1)

Now we need a resolution of the identity operator on the entire QFT H:

1 =
∑
n

|n〉 〈n| . (2.2)

This innocent-looking summation variable n is hiding an enormous sum! Let’s also

assume that the groundstate |0〉 is translation invariant:

P |0〉 = 0.

We can label each state |n〉 by its total momentum (since the components of Pµ com-

mute with each other):

Pµ |n〉 = pµn |n〉 .

Let’s examine the first term in (2.1); sticking the 1 in the form (2.2) in a suitable place:

〈0| eiPxO(0)1e−iPxO†(0) |0〉 =
∑
n

〈0| O(0) |n〉 〈n| e−iPxO†(0) |0〉 =
∑
n

e−ipnx||O0n ||2 ,

with O0n ≡ 〈0| O(0) |n〉 the matrix element of our operator between the vacuum and

the state |n〉. Notice the absolute value: unitarity of our QFT requires this to be

positive and this will have valuable consequences.

Next we work on the time-ordering symbol. I claim that :

θ(x0) = θ(t) = −i

∫
d̄ω

e+iωt

ω − iε
; θ(−t) = +i

∫
d̄ω

e+iωt

ω + iε
.

Just like in the discussion of the Feynman contour, the point of the iε is to push the pole

inside or outside the integration contour. The half-plane in which we must close the

contour depends on the sign of t. There is an important sign related to the orientation

with which we circumnavigate the pole. Here is a check that we got the signs and

factors right:
dθ(t)

dt
= −i∂t

∫
d̄ω

eiωt

ω − iε
=

∫
d̄ωeiωt = δ(t).

Consider now the fourier transform of D(x) (for simplicity, I’ve assumed O = O†
here):

−iD(q) ≡
∫
dDxeiqx (−iD(x)) = i(2π)D−1

∑
n

||O0n ||2
(
δ(D−1)(~q − ~pn)

q0 − p0
n + iε

− δ(D−1)(~q + ~pn)

q0 + p0
n − iε

)
.

(2.3)
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With this expression in hand, you could imagine measuring the O0ns and using that

to determine D.

Now suppose that our operator O is capable of creating a single particle (for exam-

ple, suppose, if you must, that O = φ, a perturbative quantum field). Such a state is

labelled only by its spatial momentum (assuming for simplicity that O doesn’t carry

any other conserved quantities):
∣∣∣~k〉 (here I briefly retreat to non-relativistic normal-

ization of states
〈
~k|~k′

〉
= δD−1(~k − ~k′)). The statement that O can create this state

from the vacuum means 〈
~k
∣∣∣O(0) |0〉 =

Z
1
2√

(2π)D−1 2ω~k

(2.4)

where Z 6= 0 and ω~k is the energy of the particle as a function of ~k. For a Lorentz

invariant theory, we can parametrize this as

ω~k
Lorentz!≡

√
~k2 +m2

in terms of m, the mass of the particle. 24 What is Z? From (2.4) and the axioms of

QM, you can see that it’s the probability that O creates this 1-particle state from the

vacuum. In the free field theory it’s 1, and it’s positive because it’s a probability. 1−Z
measures the extent to which O does anything besides create this 1-particle state.

The identity of the one-particle Hilbert space (relatively tiny!) H1 is

11 =

∫
d̄D−1~k

∣∣∣~k〉〈~k∣∣∣ , 〈
~k|~k′

〉
= δ(D−1)(~k − ~k′).

This is a summand in the whole horrible resolution:

1 = |0〉〈0|+ 11 + · · · .
24It’s been a little while since we spoke explicitly about free fields, so let’s remind ourselves about

the appearance of ω−
1
2 in (2.4), recall the expansion of a free scalar field in creation an annihilation

operators:

φ(x) =

∫
d̄D−1~p√

2ω~p

(
a~pe
−ipx + a†~pe

ipx
)

.

For a free field
∣∣∣~k〉 = a†~k

|0〉, and
〈
~k
∣∣∣φ(0) |0〉 = 1√

(2π)D−12ω~k
. The factor of ω−

1
2 is required by the

ETCRs:

[φ(~x), π(~x′)] = iδD−1(~x− ~x′), [a~k,a
†
~k′

] = δD−1(~k − ~k′) ,

where π = ∂tφ is the canonical field momentum. It is just like in the simple harmonic oscillator, where

q =

√
~

2mω

(
a + a†

)
, p = i

√
~ω
2

(
a− a†

)
.
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I mention this because it lets us define the part of the horrible
∑

n in (2.3) which comes

from 1-particle states:

=⇒ − iD(q) = ...+ i(2π)D−1

∫
d̄D−1~k

Z

(2π)D−12ωk

(
δD−1(~q − ~k)

q0 − ω~k + iε
− (ωk → −ωk)

)
= ...+ i

Z

2ωq

(
1

q0 − ωq + iε
− 1

q0 + ωq + iε

)
Lorentz

= ...+ i
Z

q2 −m2 + iε

(Here again ... is contributions from states involving something else, e.g. more than

one particle.) The big conclusion here is that even in the interacting theory, even if

O is composite and complicated, if O can create a 1-particle state with mass m with

probability Z, then its 2-point function has a pole at the right mass, and the residue

of that pole is Z. 25

The imaginary part of D is called the spectral density ρ (beware that different

physicists have different conventions for the factor of i in front of the Green’s function;

the spectral density is not always the imaginary part, but it’s always positive (in unitary

theories)!

Using

Im
1

Q∓ iε
= ±πδ(Q), (for Q real). (2.5)

in (2.3) we have

ImD(q) = π (2π)D−1
∑
n

||O0n ||2
(
δD(q − pn) + δD(q + pn)

)
.

More explicitly (for real operators):

Im i

∫
dDx eiqx 〈0| T O(x)O(0) |0〉 = π (2π)D−1

∑
n

||O0n ||2

δD(q − pn) + δD(q + pn)︸ ︷︷ ︸
=0 for q0 > 0 since p0

n > 0

 .

The second term on the RHS vanishes when q0 > 0, since states in H have energy

bigger than the energy of the groundstate. Therefore, (with Lorentz symmetry) the

contribution of a 1-particle state to the spectral density is:

ImD(q2) = ...+ πZδ(q2 −m2).

25If we hadn’t assumed Lorentz invariance, this would be replaced by the statement: if the operator

O can create a state with energy ω from the vacuum with probability Z, then its Green’s function

has a pole at that frequency, with residue Z.
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This quantity ImD(q) (the spectral density ofO) is positive because it is the number

of states (with D-momentum in an infinitesimal neighborhood of q), weighted by the

modulus of their overlap with the state engendered by the operator on the groundstate.

Now what about multiparticle states? The associated sum over such states involves

multiple (spatial) momentum integrals, not fixed by the total momentum e.g. in φ4

theory, φ can make a 3-particle state: and the three particles must

share the momentum q. In this case the sum over all 3-particle states is∑
n, 3-particle states with momentum q

∝
∫
d~k1d~k2d~k3δ

D(k1 + k2 + k3 − q)

(Note that I am not saying that a single real φ particle is decaying to three real φ

particles; that can’t happen if they are massive. Rather, in the diagram you

should think of the particle with momentum q as virtual.)

Now instead of an isolated pole, we have a whole collection of

poles right next to each other. This is a branch cut. In this

example, the branch cut begins at q2 = (3m)2. 3m is the lowest

energy q0 at which we can produce three particles of mass m (in

which case they have to be at rest).

Note that in φ3 theory, we would instead find that the particle can decay into two

particles, and the sum over two particle states would look like∑
n, 2-particle states with momentum q

∝
∫
d~k1d~k2δ

D(k1 + k2 − q)

so the continuum would start at q2 = (2m)2.

Recall that for real x the imaginary part of a function of one variable with a branch

cut, (like Im(x + iε)ν = 1
2

((x+ iε)ν − (x− iε)ν)) is equal to (half) the discontinuity

of the function ((x)ν) across the branch cut. The discontinuity goes to zero as we

approach the branch point. Near the multi-particle continuum, the Green’s function

has such a branch cut.

Now we recall some complex analysis, in the form of the Kramers-Kronig (or dis-

persion) relations:

ReG(z) =
1

π
P
∫ ∞
−∞

dω
ImG(ω)

ω − z
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(valid if ImG(ω) is analytic in the UHP of ω and falls off faster than 1/ω). These

equations, which I think we were supposed to learn in E&M but no one seems to, and

which relate the real and imaginary parts of an analytic function by an integral equa-

tion, can be interpreted as the statement that the imaginary part of a complex integral

comes from the singularities of the integrand, and conversely that those singularities

completely determine the function.

An even more dramatic version of these relations (whose imaginary part is the

previous eqn) is

f(z) =
1

π

∫
dw

ρ(w)

w − z
, ρ(w) ≡ Imf(w + iε).

The imaginary part determines the whole function.

Comments:

• The spectral density ImD(q) determines D(q). When people get excited about

this it is called the “S-matrix program” or something like that.

• The result we’ve shown protects physics from our caprices in choosing field vari-

ables. If someone else uses a different field variable η ≡ Z
1
2φ + αφ3, the result

above with O = η shows that∫
dDxeiqx 〈T η(x)η(0)〉

still has a pole at q2 = m2 and a cut starting at the three-particle threshold,

q2 = (3m)2.

• A sometimes-useful fact that we’ve basically already shown (for real operators):

ImD(q) = (2π)D
∑
n

||O0n ||2
(
δD(q − pn) + δD(q + pn)

)
=

1

2

∫
dDxeiqx 〈0| [O(x),O(0)] |0〉 .

This shows that the retarded Green’s function is also determined from the spectral

density.

We can summarize what we’ve learned in the Lorentz-invariant case as follows: In

a Lorentz invariant theory, the spectral density ρ for a scalar operator φ is a scalar

function of pµ with∑
s

δD(p− ps)|| 〈0|φ(0) |s〉 ||2 =
θ(p0)

(2π)D−1
ρ(p2) .

Claims:
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• ρ(s) = N ImD for some number N (I believe N = π here), when s > 0.

• ρ(s) = 0 for s < 0. There are no states for spacelike momenta.

• ρ(s) ≥ 0 for s > 0. The density of states for timelike momenta is positive or zero.

• With our assumption about one-particle states, ρ(s) has a delta-function singu-

larity at s = m2, with weight Z. More generally we have shown that

D(k2) =

∫
ds ρ(s)

1

k2 − s+ iε
. (2.6)

This is called the Källen-Lehmann spectral representation of the propagator; it

represents it as a sum of free propagators with different masses, determined by

the spectral density.

In particular, this result (2.6) implies that D(z = k2) is an analytic function in

the complex z-plane away from the support of ρ, i.e. away from the momenta

where physical states live. Singularities of amplitudes come only from physics.

One consequence (assuming unitarity and Lorentz symmetry) is that at large

|k2|, the Green’s function is bigger than 1
k2 , since each term in the integral goes

like 1
k2 and ρ(s) ≥ 0 means that there cannot be cancellations between each

1
k2−s contribution. This means that if the kinetic term for your scalar field has

more derivatives, something must break at short distances. Breaking Lorentz

symmetry is the easiest way out, for example on a lattice; in a Lorentz-invariant

theory, this is an indication that non-renormalizable terms imply more degrees of

freedom at high energy. (More on this in subsection §2.2.) For example, consider

the theory with Lagrangian L = (∂φ)2 + 1
Λ2 (∂2φ)

2
. It’s quadratic so we can solve

it, and the propagator is

1

k2 + k4/Λ2
=

1

k2
− 1

k2 − Λ2

which as you can see looks just like a Pauli-Villars regulator. That is, we’ve

added in a ghost field whose pole has a negative residue. As we’ve seen above,

the residue of the pole in the propagator is a probability, and hence in a unitary

theory had better be positive.

Taking into account our assumption about single-particle states, (2.6) is

D(k2) =
Z

k2 −m2 + iε
+

∫ ∞
(3m)2

ds ρc(s)
1

k2 − s+ iε

where ρc is just the continuum part. The pole at the particle-mass2 survives

interactions, with our assumption. (The value of the mass need not be the same

as the bare mass!)
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• Sum rule. Finally, suppose that the field φ in question is a canonical field, in

the sense that

[φ(x, t), ∂tφ(y, t)] = iδ(d)(x− y).

This is a statement both about the normalization of the field, and that its canon-

ical momentum is its time derivative. Then26

1 =

∫ ∞
0

dsρ(s). (2.8)

If we further assume that φ can create a one-particle state with mass m, so that

ρ(s) = Zδ(s−m2)+ρc(s) where ρc(s) ≥ 0 is the contribution from the continuum

of ≥ 2-particle states, then

1 = Z +

∫ ∞
threshold

dsρc(s)

is a sum rule. It shows that Z ∈ [0, 1] and is just the statement that if the

field doesn’t create a single particle, it must do something else. The LHS is the

probability that something happens.

The idea of spectral representation and spectral density is more general than the

Lorentz-invariant case. In particular, the spectral density of a Green’s function is

an important concept in the study of condensed matter. For example, the spectral

density for the electron 2-point function is the thing that actually gets measured in

angle-resolved photoemission experiments (ARPES).

2.2 Cutting rules and optical theorem

[Zee §III.8] So, that may have seemed a bit formal. What does this mean when we

have in our hands a perturbative QFT? Consider the two point function of a relativistic

scalar field φ which has a perturbative cubic interaction:

S =

∫
dDx

(
1

2

(
(∂φ)2 +m2φ2

)
− g

3!
φ3

)
.

26Here’s how to see this. For free fields (chapter 3) we have

〈0|[φ(x), φ(y)]|0〉free = ∆+(x− y,m2)−∆+(y − x,m2),

where ∆+(x) =
∫

d̄dp
2ω~p

e−ip·x|p0=ω~p . For an interacting canonical field, we have instead a spectral

representation (by exactly the methods above):

〈Ω|[φ(x), φ(y)]|Ω〉 =

∫
dµ2ρ(µ2)

(
∆+(x− y, µ2)−∆+(y − x, µ2)

)
, (2.7)

where ρ is the same spectral density as above. Now take ∂x0 |x0=y0 of the BHS of (2.7) and use

∂t∆+(x− y;µ2)|x0=y0 = − i
2δ

(d)(~x− ~y).

71

https://mcgreevy.physics.ucsd.edu/f21/


Sum the geometric series of 1PI insertions to get

iDφ(q) =
i

q2 −m2 − Σ(q) + iε

where Σ(q) is the 1PI two point vertex.

The leading contribution to Σ comes from the one loop

diagram at right and is

iΣ1 loop(q2) =
1

2
(ig)2

∫
d̄Dk

i

k2 −m2 + iε

i

(q − k)2 −m2 + iε
.

The 1
2

is a symmetry factor from exchanging the two inter-

nal lines of the loop. Consider this function for real q, for

which there are actual states of the scalar field – timelike qµ, with q0 > m. The real

part of Σ shifts the mass. But what does it mean if this function has an imaginary

part?

Claim: ImΣ/m is a decay rate.

It moves the energy of the particle off of the real axis from m (in its rest frame) to√
m2 + iImΣ(m2)

small ImΣ ∼ g2

' m+ i
ImΣ(m2)

2m
.

The fourier transform to real time is an amplitude for propagation in time of a state

with complex energy E : its wavefunction evolves like ψ(t) ∼ e−iEt and has norm

||ψ(t) ||2 ∼ ||e−i(E−i
1
2

Γ)t ||2 = e−Γt.

In our case, we have Γ ∼ ImΣ(m2)/m (I’ll be more precise below), and we interpret

that as the rate of decay of the norm of the single-particle state. There is a nonzero

probability that the state turns into something else as a result of time evolution in

the QFT: the single particle must decay into some other state – generally, multiple

particles. (We will see next how to figure out into what it decays.)

[End of Lecture 9]

The absolute value of the Fourier transform of this quantity ψ(t) is the kind of

thing you would measure in a scattering experiment. This is

F (ω) =

∫
dt e−iωtψ(t) =

∫ ∞
0

dt e−iωtei(M−
1
2
iΓ)t =

1

i (ω −M)− 1
2
Γ
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||F (ω) ||2 =
1

(ω −M)2 + 1
4
Γ2

is a Lorentzian in ω with width Γ. So Γ is sometimes called a width.

So: what is ImΣ1 loop in this example?

We will use
1

k2 −m2 + iε
= P 1

k2 −m2
− iπδ(k2 −m2) ≡ P − i∆

where P denotes ‘principal part’. Then

ImΣ1 loop(q) = −1

2
g2

∫
dΦ (P1P2 −∆1∆2)

with dΦ =d̄Dk1d̄
Dk2(2π)DδD(k1 + k2 − q).

This next trick, to get rid of the principal part bit, is from Zee’s book (the second

edition on p.214; he also does the calculation by brute force in the appendix to that

section). We can find a representation for the 1-loop self-energy in terms of real-space

propagators: it’s the fourier transform of the amplitude to create two φ excitations at

the origin at time zero with a single φ field (this is −ig), to propagate them both from

0 to x (this is (iD(x))2) and then destroy them both with a single φ field (this is −ig
again). This is just the position-space diagram: 0x Altogether:

iΣ(q) =
1

2

∫
dDx eiqx (−ig)2 iD(x)iD(x)

=
1

2
g2

∫
dΦ

1

k2
1 −m2

1 + iε

1

k2
2 −m2

2 + iε
(2.9)

In the bottom expression, the iεs are designed to produce the time-ordered D(x)s.

Consider instead the strange combination

0 =
1

2

∫
dDx eiqx (ig)2 iDadv(x)iDret(x)

=
1

2
g2

∫
dΦ

1

k2
1 −m2

1 − σ1iε

1

k2
2 −m2

2+σ2iε
(2.10)

where σ1,2 ≡ sign(k0
1,2). This expression vanishes because the integrand is identically

zero: there is no value of t for which both the advanced and retarded propagators are

nonzero (one has a θ(t) and the other has a θ(−t), and this is what’s accomplished by

the red σs). Therefore, we can add the imaginary part of zero

Im(i0) =
1

2
g2

∫
dΦ (P1P2 + σ1σ2∆1∆2)
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to our expression for ImΣ1-loop to cancel the annoying principal part bits:

ImΣ1-loop =
1

2
g2

∫
dΦ ((1 + σ1σ2) ∆1∆2) .

The quantity (1 + σ1σ2) is only nonzero (equal to 2) when k0
1 and k0

2 have the same

sign; but in dΦ is a delta function that sets q0 = k0
1 + k0

2. WLOG we can take q0 > 0

since we only care about the propagation of positive-energy states. Therefore both k0
1

and k0
2 must be positive.

The result is that the only values of k on the RHS that contribute are ones with

positive energy, and which satisfy all the momentum conservation constraints:

ImΣ =
1

2
g2

∫
dΦ2θ(k0

1)θ(k0
2)∆1∆2 =

1

2
g22

∫
dΦθ(k0

1)θ(k0
2)πδ(k2

1 −m2)πδ(k2
2 −m2)

=
g2

2

1

2

∫
d̄D−1~k1

2ω~k1

d̄D−1~k2

2ω~k2

(2π)DδD(k1 + k2 − q) .

In the last step we used the identity θ(k0)δ(k2−m2) = θ(k0) δ(k
0−ωk)
2ωk

. But this is exactly

(half) the density of actual final states into which the thing can decay! In summary:

ImΣ =
1

2

∑
actual states n of 2 particles

into which φ can decay

||Aφ→n ||2 = mΓ. (2.11)

In this example the decay amplitude A is just ig. And the 1
2

symmetry factor matches

the factor that accounts for identical particles in the final state. (The other factor of

two is part of the optical theorem, as we’ll see next.) In the last step we compared to

our expression for the decay rate (p. 109 of my 215A notes).

This result is generalized by the Cutkosky cutting rules

for finding the imaginary part of a feynman diagram de-

scribing a physical process. The rough rules are the fol-

lowing. Assume the diagram is amputated – leave out the

external propagators. Then any line drawn through the

diagram that separates initial and final states (as at right)

will ‘cut’ through some number of internal propagators; re-

place each of the cut propagators by θ(p0)2πδ(p2−m2) = θ(p0)2πδ(p0−εp)

2εp
. As Tony Zee

says: the amplitude becomes imaginary when the intermediate particles become real

(as opposed to virtual), aka ‘go on-shell’. This is a place where the iεs are crucial.
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There is a small but important problem with the preceding discussion (pointed out

by Brian Campbell-Deem): a single φ particle of mass m cannot decay into two φ

particles each of mass m – the kinematics of this example do not allow any final state

phase space. But we can make the example viable (without changing the calculation

at all) by thinking about a theory of two scalar fields, one light φ, one heavy Φ with

lagrangian

L =
1

2

(
(∂Φ)2 −M2Φ2 + (∂φ)2 −m2φ2 − gφ2Φ

)
and thinking about the self-energy for the (unstable) heavy particle.

The general form of (2.11) is a general consequence of unitarity. Recall that the

S-matrix is

Sfi = 〈f | e−iHT |i〉 ≡ (1 + iT )fi .

H = H† =⇒ 1 = S†S =⇒ 2ImT ≡ i
(
T † − T

) 1=S†S
= T †T .

This is called the optical theorem and it is the same as the one taught in some QM

classes. The only difference here as that the matrices are much bigger. In terms of

matrix elements:

2ImTfi =
∑
n

T †fnTni (2.12)

Here we’ve inserted a resolution of the identity (again on the QFT Hilbert space, the

same scary sum) in between the two T operators. In the one-loop approximation, in

the φ3 theory here, the intermediate states which can contribute to
∑

n are two-particle

states, so that
∑

n will turn into
∫

d̄d~k1

2ωk1

d̄d~k2

2ωk2

/δ
D

(kT ), the two-particle density of states.

A bit more explicitly, introducing a basis of scattering states

〈f | T |i〉 = Tfi = /δ
4
(pf − pi)Mfi, T †fi = /δ

4
(pf − pi)M?

if , (recall that /δ
d ≡ (2π)dδd)

we have (denoting by N the number of particles in the intermediate state)

〈F | T †1T |I〉 =
∑
N

〈F | T †
N∏
f=1

∫
d̄3qf
2Ef
|{qf}〉 〈{qf}| T |I〉

=
∑
N

N∏
f=1

∫
d̄3qf
2Ef

/δ
4
(pF −

∑
f

qf )M?
{qf}F

/δ
4
(pI −

∑
f

qf )M{qf}I

Now notice that in this basis we have a /δ
4
(pF − pI) on both sides of (2.12), and

N∏
f=1

∫
d̄3qf
2Ef

/δ
4
(pF −

∑
f

qf ) =

∫
dΠN
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is the final-state phase space of the N particles. Therefore, the optical theorem says

i (M?
IF −MFI) =

∑
N

∫
dΠNM?

{qf}FM{qf}I .

Now consider forward scattering, I = F (notice that here it is crucial that M is the

transition matrix, S = 1 + iT = 1 + i/δ(pT )M):

2ImMII =
∑
N

∫
dΠN |M{qf}I |

2.

For the special case of 2-particle scattering, we can relate the RHS to the total cross

section for 2→ anything in the CoM frame:

ImM(k1, k2 ← k1, k2) = 2Ecmpcmσ(anything← k1, k2). (2.13)

In more complicated examples (such as a box diagram contributing to 2-2 scatter-

ing), there can be more than one way to cut the diagram. Different ways of cutting

the diagram correspond to discontinuities in different kinematical variables. To get the

whole imaginary part, we have to add these up. A physical cut is a way of separating

all initial-state particles from all final-state particles by cutting only internal lines. So

for example, a t-channel tree-level diagram (like ) never has any imaginary

part; this makes sense because the momentum of the exchanged particle is spacelike.

Resonances. A place where this technology is useful is when we want to study

short-lived particles. In our formula for transition rates and cross sections we as-

sumed plane waves for our external states. Some particles don’t live long enough for

separately producing them: and then watching them decay: ;

instead we must find them as resonances in scattering amplitudes of other particles:

Im

( )
.

So, consider the case iM/δ
D

(pI − pF ) = 〈F | iT |I〉 where both I and F are one-

particle states. A special case of the LSZ formula says

M = −
(√

Z
)2

Σ = −ZΣ (2.14)

where −iΣ is the amputated 1-1 amplitude, that is, the self-energy, sum of all connected

and amputated diagrams with one particle in and one particle out. Let Σ(p) = A(p2)+
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iB(p2) (not standard notation), so that near the pole in question, the propagator looks

like

G̃(2)(p) =
i

p2 −m2
0 − Σ(p)

' i

(p2 −m2) (1− ∂p2A|m2)︸ ︷︷ ︸
=Z−1

−iB
=

iZ

(p2 −m2)− iBZ
.

(2.15)

In terms of the particle width Γw ≡ −ZB(m2)/m, this is

G̃(2)(p) =
iZ

(p2 −m2) + imΓw
.

So, if we can make the particle whose propagator we’re dis-

cussing in the s-channel, the cross-section will be propor-

tional to∣∣∣G̃(2)(p)
∣∣∣2 =

∣∣∣∣ iZ

(p2 −m2)− imΓw

∣∣∣∣2 =
Z2

(p2 −m2)2 +m2Γ2
w

a Lorentzian or Breit-Wigner distribution: In the COM

frame, p2 = 4E2, and the cross section σ(E) has a reso-

nance peak at 2E = m, with width Γw. It is the width

in the sense that the function is half its maximum when

E = E± =
√

m(m±Γw)
4

' m
2
± Γw

4
.

This width is the same as the decay rate, because of the optical theorem:

Γw = −BZ
m

(2.14)
= − 1

m
(−ImM1→1)

optical
=

1

m

1

2

∑
n

∫
f

dΠn|M{qf}1|
2 = Γ

the last equation of which is exactly our formula for the decay rate. If it is not the

case that Γ� m, i.e. if the resonance is too broad, the Taylor expansion of the inverse

propagator we did in (2.15) may not be such a good idea.

Unitarity and high-energy physics. Two comments: (1) there had better not

be any cutoff dependence in the imaginary part. If there is, we’ll have trouble cancelling

it by adding counterterms – an imaginary part of the action may destroy unitarity. This

is elaborated a bit in Zee’s discussion.

(2) Being bounded by 1, probabilities can’t get too big. Cross sections are also

bounded: there exist precise bounds from unitarity on the growth of cross sections

with energy, such as the Froissart bound, σtotal(s) ≤ C ln2 s for a constant C. Xi Yin’s

notes describe a proof.
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On the other hand, consider an interaction whose coupling G has mass dimension

k. The cross section to which G contributes has dimensions of area, and comes from

squaring an amplitude proportional to G, so comes with at least two powers of G. At

E � anything else, these dimensions must be made up with powers of E:

σ(E � ...) ∼ G2E−2−2k. (2.16)

This means that if k ≤ −1, the cross section grows at high energy, faster than the

Froissart bound allows. In such a case, something else must happen to ‘restore unitar-

ity’. One example is Fermi’s theory of Weak interactions, which involves a 4-fermion

coupling GF ∼ M−2
W . Here we know what happens, namely the electroweak theory,

about which more soon. In gravity, GN ∼M−2
Pl , we can’t say yet.

2.3 How to study hadrons with perturbative QCD

[Peskin §18.4] Here is a powerful physics application of both the optical theorem and the

spectral representation. Consider the total inclusive cross section for e+e− scattering

at energies s = (k + k+)2 � m2
e, so that we can treat the electron as massless. In that

limit 2Ecmpcm = s, and (2.13) becomes

σanything←e+e− optical thm
=

1

s
ImMforward(e+e− ← e+e−) (2.17)

where on the RHS, Mforward is the forward scattering amplitude (meaning that the

initial and final electrons have the same momenta and spin)27. We’ve learned a bit

about the contributions of electrons and muons to the BHS of this expression, what

about QCD? [End of Lecture 10]

To leading order in α (small), but to all orders in the strong coupling αs (big at

low energies), the contributions of QCD look like

iMh = = (−ie)2ū(k)γµv(k+)
−i

s
iΠµν

h (q)
−i

s
v̄(k+)γνu(k)

with

= iΠµν
h (q)

Ward
= i(q2ηµν − qµqν)Πh(q

2)

the hadronic contribution to the vacuum polarization. We can pick out the contribution

of the strong interactions by just keeping these bits on the BHS of (2.17):

σhadrons←e+e− =
1

4

∑
spins

ImMh

2s

s�m2
e' −4πα

s
ImΠh(s). (2.18)

27Note that this fixes a factor of two in Peskin 18.80. Thanks to Aneesh Manohar for finding the

problem.
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(The initial and final spins are equal and I’ve averaged the BHS over initial spins.

We can ignore the longitudinal term qµqν by the Ward identity. The spinor trace

is
∑

spins ū(k)γµv(k+)v̄(k+)γµu(k) = −8k · k+ − 16m2
s�m2

e' −4s.) As a reality check,

consider the contribution from one loop of a heavy lepton of mass M2 � m2
e:

ImΠL(s+ iε) = −α
3
F (M2/s)

and

σL
+L−←e+e− =

4π

3

α2

s
F (M2/s)

with

F (M2/s) =

0, s < (2M)2√
1− 4M2

s

(
1 + 2M2

s

)
= 1 +O (M2/s) , s > (2M)2

.

For our purposes here, the important dofs of QCD are the quark fields qf . They

are Dirac spinors, with Lagrangian Lq =
∑

f q̄f
(
i /D −mf

)
qf , Dµ = ∂µ − iQfAµ + ...,

where the ... is the coupling to the gluon field which we’ll discuss soon enough. They

have a color index which runs from 1 to 3 which I’ve suppressed. The important point

here is that they look just like electrons or muons in their coupling to the photon.

In perturbative QCD, the leading order result is

therefore just the same contribution as above, a term

from each quark with small enough mass:

σquarks←e+e−
0 = 3︸︷︷︸

colors

∑
flavors, f

Q2
f

4π

3

α2

s
F (m2

f/s).

This actually does remarkably well as a crude ap-

proximation to the measured σ(hadrons ← e+e−) –

see Fig. 5.3 of Peskin, at right. (This figure does

not appear in the paper Peskin cites, I’m not sure of

the correct provenance.) The key point is that the

ratio of the hadronic cross section to that for muons

in the final state jumps at E = 2mf where mf is the

mass of each new quark flavor (you can see mc ∼ 1.3

GeV and mb ∼ 4.5 GeV in the figure). See Peskin

pp 139-141 for more.

But Q: why is a perturbative analysis of QCD relevant here? You might think

asymptotic freedom means QCD perturbation theory is good at high energy or short
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distances, and that seems to be borne out by noticing that Πh is a two-point function

of the quark contributions to the EM current:

iΠµν
h (q) = −e2

∫
d4x e−iq·x 〈Ω| T Jµ(x)Jν(0) |Ω〉 , Jµ(x) ≡

∑
f

Qf q̄f (x)γµqf (x).

In diagrams what I am saying is:

= ⊗ ⊗

where the ⊗ represents the quark part of the electromagnetic current operator Jµ(x).

Maybe it looks like we are taking x → 0 and therefore studying short distances. But

if we are interested in large timelike qµ here, that means that dominant contributions

to the x integral are when the two points are timelike separated, and in the resolution

of the identity in between the two Js includes physical states of QCD with lots of

real hadrons. In contrast, the limit where we can do (maybe later we will learn how)

perturbative QCD is when q2 = −Q2
0 < 0 is spacelike and large. (Preview: We can use

the operator product expansion of the two currents.)

How can we use this knowledge to find the answer in the physical regime of q2 > 0?

The fact that Πh is a two-point function means that it has a spectral representation.

It is analytic in the complex q2 plane except for a branch cut on the positive real axis

coming from production of real intermediate states, exactly where we want to know the

answer. One way to encode the information we know is to package it into moments:

In ≡ −4πα

∮
CQ0

dq2

2πi

Πh(q
2)

(q2 +Q2
0)n+1

= −4πα

n!
(∂q2)n Πh|q2=−Q2

0
.

Here CQ0 is a tiny contour around the point q2 = −Q2
0. The idea here is that this

quantity can be computed by perturbative QCD.

But non-analyticities in Π(q2) only come from physical reasons – intermediate states

going on-shell. Since the physical states all have q2 > 0, we can deform the contour

freely, away from the branch cut.

On the other hand, we know from the (appropriate generalization to currents of

the) spectral representation sum rule (2.8) that Πh(q
2)
|q|�...
<∼ log(q2), so for n ≥ 1, the

contour at infinity can be ignored.
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Therefore (at the last step we also use Disc(Πh) = 2iImΠh)

In = −4πα

∮
Pacman

dq2

2πi

Πh(q
2)

(q2 +Q2
0)n+1

= −4πα

∫
dq2

2πi

DiscΠh

(q2 +Q2
0)n+1

(2.18)
=

1

π

∫ ∞
sthreshhold

ds
s

(s+Q2
0)n+1

σhadrons←e+e−(s).

On the RHS is (moments of) the measurable (indeed, measured) cross-section, and on

the LHS is things we can calculate (later). If the convergence of these integrals were

uniform in n, we could invert this relation and directly try to predict the cross sec-

tion to hadrons. But it is not, and the correct cross section varies about the leading

QCD answer more and more at lower energies, culminating at various Breit-Wigner

resonance peaks at q̄q boundstates.
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3 A parable on integrating out degrees of freedom

Here’s another parable from QM which gives some useful perspective on renormaliza-

tion in QFT and on the notion of effective field theory.

[Banks p. 138] Consider a system of two coupled harmonic oscillators. We will as-

sume one of the springs is much stiffer than the other: let’s call their natural frequencies

ω0,Ω, with ω0 � Ω. The euclidean-time action is

S[Q, q] =

∫
dt

[
1

2

(
q̇2 + ω2

0q
2
)

+
1

2

(
Q̇2 + Ω2Q2

)
+ gQq2

]
≡ Sω0 [q]+SΩ[Q]+Sint[Q, q].

(The particular form of the q2Q coupling is chosen for convenience. Don’t take too

seriously the physics at large negative Q.) We can construct physical observables in

this model by studying the path integral:

Z =

∫
[dQdq]e−S[Q,q].

Since I put a minus sign rather than an i in the exponent (and the potential terms in

the action have + signs), this is a euclidean path integral.

Let’s consider what happens if we do the path integral over the heavy mode Q, and

postpone doing the path integral over q. This step, naturally, is called integrating out

Q, and we will see below why this is a good idea. The result just depends on q; we can

think of it as an effective action for q:

e−Seff[q] :=

∫
[dQ]e−S[q,Q]

= e−Sω0 [q]
〈
e−Sint[Q,q]

〉
Q

Here 〈...〉Q indicates the expectation value of ... in the (free) theory of Q, with the

action SΩ[Q]. It is a gaussian integral (because of our choice of Sint):〈
e−Sint[Q,q]

〉
Q

=

∫
[dQ]e−SΩ[Q]−

∫
dsJ(s)Q(s) = N e

1
4

∫
dsdtJ(s)G(s,t)J(t) .

This last equality is an application of the ‘fundamental theorem of path integrals,’

i.e. the gaussian integral. Here J(s) ≡ gq(s)2. The normalization factor N is indepen-

dent of J and hence of q. And G(s, t) is the inverse of the linear operator appearing in

SΩ, the euclidean Green’s function:

SΩ[Q] =

∫
dsdtQ(s)G−1(s, t)Q(t).
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More usefully, G satisfies (
−∂2

s + Ω2
)
G(s, t) = δ(s− t) .

The fact that our system is time-translation invariant means G(s, t) = G(s − t). We

can solve this equation in fourier space: G(s) =
∫

d̄ωe−iωsGω makes it algebraic:

Gω =
1

ω2 + Ω2

and we have

G(s) =

∫
d̄ωe−iωs

1

ω2 + Ω2
. (3.1)

So we have:

e−Seff[q] = e−Sω0 [q]e−
∫
dtds g

2

2
q(s)2G(s,t)q(t)2

or taking logs

Seff[q] = Sω0 [q] +

∫
dtds

g2

2
q(s)2G(s, t)q(t)2 . (3.2)

Q mediates an interaction of four qs, an anharmonic term, a

self-interaction of q. In Feynman diagrams, the leading inter-

action between q’s mediated by Q comes from the diagram

at left.
And the whole thing comes from exponentiating disconnected copies of this diagram.

There are no other diagrams: once we make a Q from two qs what can it do besides

turn back into two qs? Nothing. And no internal q lines are allowed, they are just

sources, for the purposes of the Q integral.

But it is non-local: we have two integrals over the time in the new quartic term.

This is unfamiliar, and bad: e.g. classically we don’t know how to pose an initial value

problem using this action.

But now suppose we are interested in times much longer than 1/Ω, say times com-

parable to the period of oscillation of the less-stiff spring 2π/ω0. We can accomplish

this by Taylor expanding under the integrand in (3.1):

G(s) =

∫
d̄ωe−iωs

1

Ω2

1

1 + ω2

Ω2︸ ︷︷ ︸
=
∑
n(−1)n

(
ω2

Ω2

)n
s�1/Ω
' 1

Ω2
δ(s) +

1

Ω4
∂2
sδ(s) + ...

Plug this back into (3.2):

Seff[q] = Sω0 [q] +

∫
dt

g2

2Ω2
q(t)4 +

∫
dt

g2

2Ω4
q̇2q2 + ...
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The effects of the heavy mode Q are now organized in a derivative expansion, with

terms involving more derivatives suppressed by more powers of the high energy scale

Ω.

+ · · · (3.3)

A useful mnemonic for integrating out the effects of the heavy field in terms of Feynman

diagrams: to picture Q as propagating for only a short time (compared to the external

time t−s), we can contract its propagator to a point. The first term on the RHS shifts

the q4 term, the second shifts the kinetic term, the third involves four factors of q̇...

On the RHS of this equation, we have various interactions involving four qs, which

involve increasingly many derivatives. The first term is a quartic potential term for

q: ∆V = g
Ω2 q

4; the leading effect of the fluctuations of Q is to shift the quartic self-

coupling of q by a finite amount (note that we could have included a bare λ0q
4 potential

term).

Notice that if we keep going in this expansion, we get terms with more than two

derivatives of q. This is OK. We’ve just derived the right way to think about such

terms: we treat them as a perturbation, and they are part of a never-ending series of

terms which become less and less important for low-energy questions. If we want to

ask questions about q at energies of order ω, we can get answers that are correct up to

effects of order
(
ω
Ω

)2n
by keeping the nth term in this expansion.

Conversely if we are doing an experiment with precision ∆ at energy ω, we can

measure the effects of up to the nth term, with(ω
Ω

)2n

∼ ∆.

Another important lesson: Seff[q] contains couplings with negative dimensions of

energy ∑
n

cn (∂nt q)
2 q2, with cn ∼

1

Ω2n
,

exactly the situation where the S-matrix grows too fast at high energies that we dis-

cussed above in (2.16). In this case we know exactly where the probability is going: if

we have enough energy to see the problem (E ∼ Ω), we have enough energy to kick

the heavy mode Q out of its groundstate.

84



3.0.1 Attempt to consolidate understanding

We’ve just done some coarse graining: focusing on the dofs we care about (q), and

actively ignoring the dofs we don’t care about (Q), except to the extent that they

affect those we do (e.g. the self-interactions of q).

Above, we did a calculation in a QM model with two SHOs. This is a microcosm

of QFT in many ways. For one thing, free quantum fields are bunches of harmonic

oscillators with natural frequency depending on k, Ω =
√
~k2 +m2. Here we kept just

two of these modes (one with large k, one with small k) for clarity. Perhaps more

importantly, QM is just QFT in 0+1d. The more general QFT path integral just

involves more integration variables. The idea of the Wilsonian RG (for continuum

field theory) is essentially to do the integrals over the modes in descending order of

wavenumber, and at each stage make the expansion described above to get a local

action. And notice that basically all possible terms are generated, consistent with the

symmetries (here for example, there is a Z2 symmetry under which q → −q, so there

are no odd powers of q).

The result of that calculation was that fluctuations of Q mediate various q4 inter-

actions. It adds to the action for q the following: ∆Seff[q] ∼
∫
dtdsq2(t)G(t− s)q2(s),

as in Fig. 3.3.

If we have the hubris to care about the exact answer, it’s nonlocal in time. But

if we want exact answers then we’ll have to do the integral over q, too. On the other

hand, the hierarchy of scales ω0 � Ω is useful if we ask questions about energies of

order ω0, e.g.

〈q(t)q(0)〉 with t ∼ 1

ω0

� 1

Ω
.

Then we can Taylor expand the function G(t − s), and we find a series of corrections

in powers of 1
tΩ

(or more accurately, powers of ∂t
Ω

).

(Notice an important asymmetry: it’s not so useful to integrate out light degrees

of freedom to get an action for the heavy degrees of freedom; that would necessarily

be nonlocal and stay nonlocal and we wouldn’t be able to treat it using ordinary

techniques.)

The crucial point is that the scary non-locality of the effective action that we saw

only extends a distance of order 1
Ω

; the kernel G(s − t) looks like this:

The mechanism we’ve just discussed is

an essential ingredient in getting any physics

done at all. Why can we do physics despite
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the fact that we do not understand the the-

ory of quantum gravity that governs Planck-

ian distances? We happily do lots of physics

without worrying about this! This is because

the effect of those Planckian quantum gravity

fluctuations – whatever they are, call them Q

– on the degrees of freedom we do care about (e.g. the Standard Model, or an atom,

or the sandwich you made this morning, call them collectively q) are encoded in terms

in the effective action of q which are suppressed by powers of the high energy scale

MPlanck, whose role in the toy model is played by Ω. And the natural energy scale of

your sandwich is much less than MPlanck. [End of Lecture 11]

I picked the Planck scale as the scale to ignore here for rhetorical drama, and

because we really are ignorant of what physics goes on there. But this idea is equally

relevant for e.g. being able to describe water waves by hydrodynamics (a classical

field theory) without worrying about atomic physics, or to understand the physics of

atoms without needing to understand nuclear physics, or to understand the nuclear

interactions without knowing about the Higgs boson, and so on deeper into the onion

of physics.

This wonderful situation, which makes physics possible, has a price: since physics

at low energies is so insensitive to high energy physics, it makes it hard to learn about

high energy physics! People have been very clever and have learned a lot in spite of

this vexing property of the RG called decoupling. We can hope that will continue.

(Cosmological inflation plays a similar role in hiding the physics of the early universe.

It’s like whoever designed this game is trying to hide this stuff from us.)

The explicit functional form of G(s) (the inverse of the (euclidean) kinetic operator

for Q) is:

G(s) =

∫
d̄ω

e−iωs

ω2 + Ω2
= e−Ω|s| 1

2Ω
. (3.4)

Do it by residues: the integrand has poles at ω = ±iΩ. The absolute value of |s| is

crucial, and comes from the fact that the contour at infinity converges in the upper

(lower) half plane for s < 0 (s > 0).

Next, some comments about ingredients in this discussion, which provide a useful

opportunity to review some important QFT technology:

• Please don’t be confused by the formal similarity of the above manipulations with
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the construction of the generating functional of correlation functions of Q:

Z[J ] ≡
〈
e
∫
dtQ(t)J(t)

〉
Q
, 〈Q(t1)Q(t2)...〉connected

Q =
δ

δJ(t1)

δ

δJ(t2)
... logZ[J ]

It’s true that what we did above amounts precisely to constructing Z[J ], and

plugging in J = g0q
2. But the motivation is different: in the above q is also a

dynamical variable, so we don’t get to pick q and differentiate with respect to it;

we are merely postponing doing the path integral over q until later.

• Having said that, what is this quantity G(s) above? It is the (euclidean) two-

point function of Q:

G(s, t) = 〈Q(s)Q(t)〉connected
Q =

δ

δJ(t)

δ

δJ(s)
logZ[J ]|J=0.

The middle expression makes it clearer that G(s, t) = G(s − t) since nobody

has chosen the origin of the time axis in this problem. This euclidean Green’s

function, the inverse of −∂2
τ + Ω2, is unique, once we demand that it falls off at

large separation (unlike the real-time Green’s function).

• Adding more labels. Quantum mechanics is quantum field theory in 0+1

dimensions. Except for our ability to do all the integrals, everything we are

doing here generalizes to quantum field theory in more dimensions: quantum

field theory is quantum mechanics (with infinitely many degrees of freedom).

With more spatial dimensions, we’ll want to use the variable x for the spatial

coordinates (which are just labels on the fields!) and it was in anticipation of

this step that I used q instead of x for my oscillator position variables.
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4 Gauge theory

4.1 The Anderson-Higgs Mechanism and superconductors

Landau-Ginzburg EFT of superconductors: Massive vector fields as gauge

fields. Consider a massive vector field Bµ with Lagrangian density

LB = − 1

4e2
(dB)µν(dB)µν+

1

2
m2BµB

µ (4.1)

where (dB)µν ≡ ∂µBν − ∂νBµ. (Note the funny-looking sign of the mass term which

comes from BµBµ = B2
0 − B2

i .) The mass term is not invariant under Bµ → Bµ +

∂µλ, the would-be gauge transformation. We can understand the connection between

massive vector fields and gauge theory by the ‘Stueckelberg trick’ of pretending that

the gauge parameter is a field: Let Bµ ≡ Aµ− ∂µθ where θ is a new degree of freedom.

Since B is invariant under the transformation

Aµ(x)→ Aµ(x) + ∂µλ(x), θ(x)→ θ(x) + λ(x),

so is any functional of B. Notice that the fake new field θ transforms non-linearly

(i.e. its transformation is affine). This was just a book-keeping step, but something

nice happens:

(dB)µν = ∂µAν − ∂νAµ = Fµν

is the field strength of A. The mass term becomes

BµB
µ = (Aµ − ∂µθ)(Aµ − ∂µθ).

This contains a kinetic term for θ. We can think of this term as (energetically) setting

θ equal to the longitudinal bit of the gauge field. One nice thing about this reshuffling

is that the m → 0 limit decouples the longitudinal bits. Furthermore, if we couple a

conserved current (∂µjµ = 0) to B, then∫
dDx jµB

µ =

∫
dDxjµA

µ

it is the same as coupling to Aµ.

Who is θ? Our previous point of view was that it is fake and we can just choose

the gauge parameter λ(x) to get rid of it, and set θ(x) = 0 (in which case, B = A).

This is called unitary gauge, and gives us back the Proca theory of B = A.
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Consider, as an aside, the following model of a single complex scalar:

Lglobal ≡ +
1

2
|∂µΦ|2 − V (|Φ|)

and let’s take

V (|Φ|) = κ(|Φ|2 − v2)2

for some couplings κ, v. This potential has a U(1) sym-

metry Φ → eiλΦ, and a circle of minima at |Φ|2 = v2

(if v2 > 0, which we’ll assume). When v2 > 0, the mass

term about the origin has the wrong sign. In polar co-

ordinates in field space, Φ ≡ ρeiθ, the Lagrangian is

Lglobal = +
1

2
ρ2(∂µθ)

2 +
1

2
(∂ρ)2− V (ρ)

E�V ′′(v)
' 1

2
v2(∂θ)2.

In the last step, we observed that the excitations of the

ρ field are have mass-squared V ′′(v) = 8κv2 about the

minimum; below that energy scale, we can integrate it

out and ignore it. The θ field is the massless Goldstone

boson, which parametrizes the circle of minima.

This is a long-wavelength description of a (relativistic, because of the kinetic terms)

superfluid. Here I am making a distinction between superfluid and superconductor; the

former spontaneously breaks a continuous global symmetry.

Now consider the following theory, related to the previous by gauging the U(1)

symmetry:

Lh ≡ −
1

4e2
FµνF

µν +
1

2
|DµΦ|2 − V (|Φ|)

where Φ is a complex, charged scalar field whose covariant derivative is DµΦ =

(∂µ − iqAµ) Φ, with the same V as above. This is called an Abelian Higgs model.

The U(1) symmetry is gauged, in the sense that Aµ → Aµ +∂µλ(x),Φ(x)→ eiqλ(x)Φ(x)

is an invariance of the action, and we’ve learned to regard such a local invariance as a

redundancy of the description.

In polar coordinates in field space, Φ ≡ ρeiθ, the Lagrangian is now

Lh = − 1

4e2
FµνF

µν +
1

2
q2ρ2(Aµ − ∂µθ)2 +

1

2
(∂ρ)2 − V (ρ).

This differs from the action for B written in terms of A, θ only in the addition of the

Higgs mode ρ. Again we can go to unitary gauge and set θ = 0. We find a massive
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gauge field A, plus a massive scalar ρ whose mass (expanding V (ρ) about ρ = v) is

∂2
ρV |ρ=v = m2

ρ = 8κv2 κ�1
� m2

A = q2 〈ρ〉2 = q2v2.

That is: in the limit of large κ, the excitations of ρ are hard to make, and we get back

LB. For any value of κ, we can say that the gauge field eats the would-be Goldstone

boson θ and becomes heavy, in a manner consistent with gauge invariance28. This is

the Anderson-Higgs mechanism.

The description of massive gauge fields in terms of Lh via the Anderson-Higgs

mechanism is more useful than LB for thinking about the renormalization of massive

gauge fields: for example it is renormalizible, even if we couple A to other charged

fields (e.g. Dirac fermions). This mechanism also works in the case of non-Abelian

gauge fields and is an important ingredient in the (electroweak sector of the) Standard

Model.
It is also a description of what happens to the EM field in

a superconductor: the photon gets a mass; the resulting ex-

pulsion of magnetic flux is called the Meissner effect. For

example, if we immerse a region x > 0 with Φ = v in an

external constant magnetic field B0,

0 = ∂µF
µν −m2Aν =⇒ B(x) = Be−mx. (4.2)

Another consequence of the mass is that if we do manage to sneak some magnetic

flux into a superconductor, the flux lines will bunch up into a localized string. This

can be shown by solving the equations of motion of the model above (see the home-

work). This is called a vortex (or vortex string in 3d) because of what Φ does in this

configuration: its phase winds around the defect. In a superconductor, the role of Φ

is played by the Cooper pair field (which has electric charge q = 2). The fact that

Φ has charge two is visible in the flux quantization of the vortices (this is part of the

homework problem). I hope to say more about its origins in terms of electrons later in

§??.

I mention here the Meissner effect and the associated collimation of flux lines partly

because it is helpful for developing a picture of confinement. In particular: think

about the energetics of a magnetic monopole (suppose we had one available29) in a

superconductor. If we try to insert it into a superconductor, it will trail behind it a

vortex string along which all of its exiting magnetic flux is localized. This string has

a finite tension (energy per unit length), as you’ll study on the homework. If we make

28You can check that the mixing with θ is exactly what’s required to make Π(q) singular enough at

q = 0 to give A a mass consistent with the Ward identity, as in our discussion at (1.58).
29Here is the paper about the only one that’s been detected by humans so far.
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the superconducting region larger and larger, the energy of the monopole configuration

grows linearly in the size – it is not a finite energy object in the thermodynamic

limit. If monopoles were dynamical excitations of rest mass Mm, it would eventually

become energetically favorable to pop an antimonopole out of the vacuum, so that the

flux string connects the monopole to the antimonopole – this object can have finite

energy inside the superconductor. But notice that in a region where electric charge

is condensed, a single monopole is confined by the magnetic flux string it must carry

around. A confining state of a gauge theory is like this for the electric charges, because

magnetic charge is condensed. The two pictures are related by electromagnetic duality,

which acts by

~E → ~B, ~B → − ~E, e→ 1

e
, jµe ↔ jµm (4.3)

where je,m are the electric and magnetic current densities.

4.2 Festival of gauge invariance

Consider a collection of N complex scalar fields (we could just as well consider spinors)

with, for definiteness, an action of the form

L =
N∑
α=1

∂µΦ?
α∂

µΦα − V (Φ?
αΦα) (4.4)

(or L = Ψ̄α(/∂−m)Ψα+(Ψ̄αΓΨα)2). So far, the model actually has an O(2N) symmetry

except that for kicks I grouped the scalars into pairs, and wrote the potential in terms

of the combination
∑N

α=1 Φ?
αΦα.

Lighting review of Lie groups and Lie algebras. (4.4) is invariant under the

U(N) transformation

Φα 7→ ΛαβΦβ, Λ†Λ = 1. (4.5)

Any such U(N) matrix Λ can be parametrized as

Λ = Λ(λ) = ei
∑N2−1
A=1 λATAeiλ

0

.

λ0 parametrizes a U(1) factor that commutes with everyone; we already know something

about U(1) gauge theory from QED, so we won’t focus on that. We’ll focus on the

non-abelian part: the TA are the generators of SU(N), and are traceless, so SU(N) 3
Λ(λ0 = 0) has det Λ(λ0 = 0) = 1. Here the index A = 1...N2 − 1 = dim(SU(N)); the

matrices TA (and hence also Λ) are N ×N , and satisfy the Lie algebra relations

[TA, TB] = ifABCT
C (4.6)
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where fABC are the structure constants of the Lie algebra SU(N). For the case of

SU(2), TA = 1
2
σA, A = 1, 2, 3, and fABC = εABC . The infinitesimal version of (4.5),

with Λ close to the identity, is

Φα 7→ Φα + iλATAαβΦβ. (4.7)

The N×N representation is called the fundamental representation of SU(N). Other

representations of the group come from other sets of TAR s that satisfy the same algebra

(4.6), but can have other dimensions. For example, the structure constants themselves(
TAadj

)
BC
≡ −ifABC furnish the representation matrices for the adjoint representation.

Local invariance. The transformation above was global in the sense that the

parameter λ was independent of spacetime. This is an actual symmetry of the physical

system associated with (4.4). Let’s consider how we might change the model in (4.4)

to make it invariant under a local transformation, with λ = λ(x). In the Abelian case,

we have learned the recipe

Φ 7→ eiλ(x)Φ(x), Aµ 7→ Aµ + ∂µλ, ∂µΦ DµΦ = (∂µ − iAµ)Φ 7→ eiλ(x)DµΦ.

In words: by replacing partial derivatives with covariant derivatives, we can make

gauge-invariant Lagrangians. The same thing works in the non-abelian case:

(DµΦ)α ≡ ∂µΦα − iAAµT
A
αβΦβ

Φ 7→ Φ + iλA(x)TAΦ, AAµ 7→ AAµ + ∂µλ
A − fABCλBACµ (x). (4.8)

The difference is that there is a term depending on A in the shift of the gauge field A.

The following Yang-Mills Lagrangian density is a natural generalization of Maxwell:

LYM = − 1

4g2

∑
A

∂µAAν − ∂νAAµ + fABCA
B
µA

C
ν︸ ︷︷ ︸

=FAµν=−FAνµ


2

= − 1

2g2
trFµνF

µν . (4.9)

The field strength

FA
µν 7→ FA

µν − fABCλBFC
µν = FA

µν + iλB
(
TBadj

)
AC

FC
µν (4.10)

is designed so that it transforms in the adjoint representation, and therefore SYM is

gauge-invariant. In the last step of (4.9), we regarded F as anN×N matrix F = FATA,

and chose a basis of the Lie algebra with trTATB = 1
2
δAB. In terms of this matrix

F , the finite version of (4.10) is just F 7→ ΛFΛ−1 (compare (4.7)), which makes it

manifest that trF 2 is invariant. [End of Lecture 12]
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4.3 Interlude on differential forms

[Zee section IV.4] We interrupt this physics discussion with a message from our math-

ematical underpinnings. This is nothing fancy, mostly just some book-keeping. It’s

some notation that we’ll find useful, which I would find it rather inhibiting not to be

able to use in the next section. As a small payoff we can define some simple topological

invariants of smooth manifolds.

Suppose we are given a smooth manifold X on which we can do calculus. For now,

we don’t even need a metric on X. Suppose xµ are some local coordinates on X.

A p-form on X is made of a completely antisymmetric p-index tensor,

A ≡ 1

p!
Am1...mpdx

m1 ∧ ... ∧ dxmp .

The coordinate one-forms are fermionic objects in the sense that dxm1∧dxm2 = −dxm2∧
dxm1 and (dx)2 = 0. Under a coordinate transformation, they transform like dx̃µ =
∂x̃µ

∂xν
dxν . To understand the point of the antisymmetry of the product of forms, consider

the case of two dimensions: dx̃ ∧ dỹ = Jdx ∧ dy, where J = det ∂(x̃,ỹ)
∂(x,y)

is the Jacobian

for the change of variables.

Familiar examples include the gauge potential A = Aµdxµ, and its field strength

F = 1
2
Fµνdx

µ∧dxν . The point in life of a p-form is to be integrated over a p-dimensional

submanifold of spacetime. The order of its indices keeps track of the orientation (and

it saves us the trouble of writing them). It is a geometric object, in the sense that it is

something that can be (wants to be) integrated over a p-dimensional subspace of X,

and its integral will only depend on the subspace, not on the coordinates we use to

describe it. For example, given a curve C in X parameterized as xµ(s), we can make

the scalar quantity ∫
C

A ≡
∫
C

dxµAµ(x) =

∫
ds
dxµ

ds
Aµ(x(s))

and this would be the same if we chose some other parameterization or some other local

coordinates (by the chain rule). This is the phase acquired by a unit-charge particle

when moving along the path C in the background gauge field configuration described

by A.

The wedge product of a p-form A and a q-form B is a p+ q form

A ∧B = Am1..mpBmp+1...mp+qdx
m1 ∧ ... ∧ dxmp+q ,

30 This product satisfies Ap ∧Bq = (−1)pqBq ∧Ap. The space of differentiable p-forms

30The components of A ∧B are then

(A ∧B)m1...mp+q =
(p+ q)!

p!q!
A[m1...mpBmp+1...mp+q ]
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on a manifold X is sometimes denoted Ωp(X); this a vector space (let’s say over R),

since we can add p forms and multiply them by real numbers.

The exterior derivative d is a linear operator acting on forms as

d : Ωp(X) → Ωp+1(X)

A 7→ dA = dxν ∧ ∂νA

by

dA =
1

p!
∂m1Am2...mp+1dxm1 ∧ ... ∧ dxmp+1 .

You can check that

d2 = 0

because derivatives commute when acting on smooth functions. Notice that F = dA

in the example above. Denoting the boundary of a region D by ∂D, Stokes’ theorem

is ∫
Dp

dαp−1 =

∫
∂Dp

αp−1.

And notice that Ωp>dim(X)(X) = 0 – there are no forms of rank larger than the

dimension of the space.

A form ωp is closed if it is killed by d: dωp = 0. ωp closed means that
∫
Cp
ωp depends

only on the topology of Cp, in the sense that

∫
Cp

ωp −
∫
C′p

ωp =

∫
Cp−C′p

ωp =

∫
∂Rp+1

ωp
Stokes

=

∫
Rp+1

dωp = 0.

A form ωp is exact if it is d of something: ωp = dαp−1. That something must

be a (p − 1)-form. ωp is exact means it is a total derivative, a boundary term, so∫
Cp
ωp

Stokes
=

∫
∂Cp

αp−1 vanishes if Cp doesn’t have a boundary.

To get some familiarity with the above language let’s think about the caseM = R3

for a moment. Then Ω0(R3) and Ω3(R3) are both spanned by ordinary functions, while

Ω1(R3) and Ω2(R3) are both spanned by vector fields – functions with a single index.

On functions, df = ∂ifdx
i. On 1-forms,

d(fidx
i) = (∂yfz − ∂zfy) dy∧dz+(∂xfy − ∂yfx) dx∧dy+(∂zfx − ∂xfz) dz∧dx =

1

3!
εijk∂ifjεklmdx

l∧dxm.

where [..] means sum over permutations with a −1 for odd permutations. Try not to get caught up in

the numerical prefactors. In my expression below for the exterior derivative also there is an annoying

combinatorial prefactor.
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On 2-forms

d(fxdy ∧ dz + fydz ∧ dx+ fzdx ∧ dy) = ∂ifidx ∧ dy ∧ dz.

So this accounts for all the classic operations of vector calculus:

d(0-form) = gradient, d(1-form) = curl, d(2-form) = divergence.

Because of the property d2 = 0, it is possible to define cohomology – the image of

one d : Ωp → Ωp+1 is in the kernel of the next d : Ωp+1 → Ωp+2 (i.e. the Ωps form a

chain complex). The pth de Rham cohomology group of the space X is defined to be

Hp(X) ≡ closed p-forms on X

exact p-forms on X
=

ker (d) ∈ Ωp

Im (d) ∈ Ωp
.

That is, two closed p-forms are equivalent in cohomology if they differ by an exact

form:

[ωp]− [ωp + dαp−1] = 0 ∈ Hp(X),

where [ωp] denotes the equivalence class. The dimension of this group is bp ≡ dimHp(X)

called the pth betti number and is a topological invariant of X. The euler characteristic

of X, which you can also get by triangulating X and counting edges and faces and stuff,

is

χ(X) =

d=dim(X)∑
p=0

(−1)pbp(X).

Here’s a very simple example, where X = S1 is a circle. x ' x+ 2π is a coordinate;

the radius will not matter since it can be varied continuously. An element of Ω0(S1) is

a smooth periodic function of x. An element of Ω1(S1) is of the form A1(x)dx where

A1 is a smooth periodic function. Every such element is closed because there are no

2-forms on a 1d space. The exterior derivative on a 0-form is

dA0(x) = A′0dx

Which 1-forms can we make this way? The only one we can’t make is dx itself, because

x is not a periodic function. Which 0-forms are closed? A′0 = 0 means A0 is a constant.

Therefore b0(S1) = b1(S1) = 1.

A classical physics context where one encounters a cohomological question is in

fluid dynamics: given a vector field, say describing the flow of a fluid on some space
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X, when is it the gradient of a well-defined function on X? Or in electrostatics on

some space X, an allowed electric field configuration must be the gradient of a scalar

potential on X\ the locations of the charges.

Now suppose we have a metric on X, i.e. a way of measuring distances ds2 =

gµνdx
µdxν . Then we can define the Hodge star operation ? which maps a p-form into

a (d− p)-form:

? : Ωp → Ωd−p

by (
?A(p)

)
µ1...µd−p

≡
√
g

p!
εµ1...µdA

(p) µd−p+1...µd

where
√
g ≡
√

det g and indices are raised with the inverse metric gµν .

Here are some familiar statements written in the above language. The electro-

magnetic field is a 2-form on spacetime, R4 (I use ijk for spatial indices and µν for

spacetime indices):

F = dA = Eidx
i∧dt+Bxdy∧dz+Bydz∧dx+Bzdx∧dy = Eidx

i∧dt+Bidx
j∧dxkεijk/2.

The dual field strength, in flat spacetime, is

?F ==
1

2
εµνρσF

ρσdxµ ∧ dxν = −Bidx
i ∧ dt+ Eidx

j ∧ dxjεijk/2.

Maxwell’s equations (away from charges) are dF = 0, d ? F = 0. (Including charges,

they are dF = ?jm, d ? F = ?je, which expression makes electromagnetic duality

manifest.) The first is the Bianchi identity, which is automatic if A is well-defined,

while the second is the equations of motion associated with the Maxwell action

S[A] = − 1

2e2

∫
F ∧ ?F = − 1

4e2

∫
dDx
√
gFµνF

µν .

Maxwell’s equations say that both F and ?F represent cohomology classes in spacetime

(minus the locations of charges). Consider the simplest possible nontrivial example of

a point charge at rest at the origin of coordinates. The field strength is F = q dr∧dt
r2 =

−qd
(
dt
r

)
, well-defined in M ≡ R4 \ Rt, where we remove the origin at all times.

F is clearly exact and hence represents the trivial class in H2(M). However, using

dr = xidxi/r and e.g. ?dx ∧ dt = dy ∧ dz, we have

?F = q
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

r
.

This is a nontrivial element of H2(M), as you can see by integrating it over the

appropriate Gaussian surface, i.e. the 2-sphere surrounding the particle to get
∫
S2 ?F =

96



4πq. So we can interpret the charge of the particle as an element of the cohomology

group H2(M).

Abelian p-form gauge fields. The usual Maxwell field strength is F2 = dA1. It

is invariant under gauge transformations A1 → A1 + dλ0 since d2 = 0. A large family

of useful generalizations of this is p-form abelian gauge fields:

Fp+1 = dAp, δAp = dλp−1.

Again the field strength is gauge invariant by d2 = 0. An action is

S[A] = − 1

2g2

∫
Fp+1 ∧ ?Fp+1 ∝ −

∫
dDx

√
g

(p+ 1)!
Fµ1···µp+1F

µ1···µp+1 .

For p = 0, this is just L = − 1
2g2 (∂φ)2, a massless scalar. The equations of motion are

0 =
δS

δA(x)
∝ d ? F (x).

In flat spacetime of enough dimensions, we can fourier transform and see that this

describes a massless excitation with a spin that depends on p and D.

The analog of minimal coupling for a p-form gauge field is to a p-dimensional

worldvolume:

∆S = e

∫
Xp

Ap

– this is the worldvolume of a (p− 1)-brane, an object with p− 1 spatial dimensions.

In spacetime dimensions D = 2 mod 4, it is consistent with the equations of motion

to impose a (anti-)self-duality equation: FD/2 = ± ? FD/2, which gets rid of half the

degrees of freedom. In D = 2 this describes a chiral scalar. In D = 4, this describes only

one circular polarization of the photon. The Maxwell-like action, however, vanishes

when imposing this condition and there is no covariant action principle for such fields.

They also enjoy various gravitational anomalies.

The duality operation dAp = ?dA∨D−p−2 exchanges the Bianchi identity and the

equation of motion. We can learn something by giving a path-integral derivation of

the duality. The partition function (euclidean) is∫
[dA]e

− 1
2g2

∫
dA∧?dA

=

∫
[dAdBdA∨]

(?)
e
− 1

2g2

∫
(F−B)∧?(F−B)+i

∫
B∧dA∨

=

∫
[dA∨]e−

g2

2

∫
dA∨∧?dA∨ .

In the first step, we introduce A∨ as a Lagrange multiplier to impose dB = 0 (and∮
X
B ∈ 2πZ for all 2-cycles X). The middle object has a new redundancy under

(?) A→ A+ Λ, B → B + dΛ (4.11)
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for an arbitrary p-form Λ; when dB = 0 (and B has integral periods) this can be used to

set B = 0, giving back the first expression. In the second step, we set A = 0 and do the

gaussian integral over B, producing a nontrivial action for A∨. (The same manipulation

works for other gauge-invariant observables.) Notice that the coupling constant gets

inverted. A simple example of this is p = 0, D = 2 which relates a compact scalar of

radius R = 1
g

to one with radius R – this is called T-duality. The manipulation above

is described in §2.2 here for D = 4, p = 1, and here for D = 2, p = 0.

As you can see from the Maxwell example, the Hodge star gives an inner product

on Ωp: for two p-forms α, β (α, β) =
∫
α ∧ ?β, (α, α) ≥ 0. We can define the adjoint

of d with respect to this inner product by∫
d†α ∧ ?β = (d†α, β) ≡ (α, dβ) =

∫
α ∧ ?dβ

Combining this relation with integration by parts, we find d† = ± ? d?.

We can make a Laplacian on forms by

∆ = dd† + d†d.

This is a supersymmetry algebra, in the sense that d, d† are grassmann operators.

Any cohomology class [ω] has a harmonic representative, [ω] = [ω̃] where in addition

to being closed dω = dω̃ = 0, it is co-closed, 0 = d†ω̃, and hence harmonic ∆ω̃ = 0.

An application of this is Poincare duality: bp(X) = bd−p(X) if X has a volume form.

This follows because the map Hp → Hd−p which takes [ωp] 7→ [?ωp] is an isomorphism.

(Choose the harmonic representative, it has d ? ω̃p = 0.)

The de Rham complex of X can be realized as the groundstates of a physical system,

namely the supersymmetric nonlinear sigma model with target space X. The fermions

play the role of the dxµs. The states are of the form

|A〉 =
d∑
p=1

Aµ1···µp(x)ψµ1ψµ2 · · ·ψµp |0〉

where ψ are some fermion creation operators. This shows that the hilbert space is the

space of forms on X, that is H ' Ω(X) = ⊕pΩp(X). The supercharges act like d and

d† and therefore the supersymmetric groundstates are (harmonic representatives of)

cohomology classes.

For more in this direction, take a look at the notes here.

The machinery of differential forms is very useful.
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4.4 Gauge fields as connections

The formulae in §4.2 are not too hard to verify, but where did they come from? Suppose

we wanted to attach an N -dimensional complex vector space to each point in spacetime;

on each vector space we have an action of SU(N), by Φα(x) 7→ Λαβ(x)Φβ(x). Suppose

we would like to do physics in a way that is independent of the choice of basis for this

space, at each point. We would like to be able to compare Φ(x) and Φ(y) (for example

to make kinetic energy terms) in a way that respects these independent rotations. To

do this, we need more structure: we need a connection (or comparator) Wxy, an object

that transforms like Wxy 7→ Λ(x)WxyΛ
−1(y), so that Φ†(x)WxyΦ(y) is invariant. The

connection between two points Wxy may depend on how we get from x to y. We

demand that W (∅) = 1, W (C2 ◦ C1) = W (C2)W (C1) and W (−C) = W−1(C), where

−C is the path C taken in the opposite direction.

But if we have a Wxy for any two points, you can’t stop me from considering nearby

points and defining (the covariant derivative)

DµΦ(x) ≡ lim
∆x→0

W (x, x+ ∆x)Φ(x+ ∆x)− Φ(x)

∆xµ
7→ Λ(x)DµΦ(x) . (4.12)

Expanding near ∆x→ 0, we can let

W (x, x+ ∆x) = 1 − ie∆xµAµ(x) +O(∆x2) (4.13)

this defines the gauge field Aµ (sometimes also called the connection). To make the

gauge transformation of the non-abelian connection field A 7→ AΛ obvious, just re-

member that the covariant derivative of a field is designed to transform like the field:

DµΦ 7→ DAΛ

µ (ΛΦ)
!

= Λ
(
DA
µΦ
)

which means AΛ
µ = ΛAµΛ−1− (∂µΛ) Λ−1. (This formula

also works in the abelian case Λ = eiλ, and knows about the global structure of the

group λ ' λ+ 2π.) [End of Lecture 13]

The equation (4.13) can be integrated: Wxy
?
= e

−ie
∫
Cxy

Aµ(x̃)dx̃µ
where Cxy is a path

in spacetime from x to y. What if G is not abelian? Then I need to tell you the ordering

of the exponential. We know from Dyson’s equation that the solution is

Wxy = Pe−ie
∫
Cxy

Aµ(x̃)dx̃µ

where P indicates path-ordering along the path Cxy, just like the time-ordered expo-

nential we encountered in interaction-picture perturbation theory.

To what extent does Wxy depend on the path? In the abelian

case,

WC = WC′e
ie
∮
C−C′ A

Stokes
= WC′e

ie
∫
R Fµνdx

µdxν

where ∂R = C −C ′ is a 2d surface whose boundary is the differ-

ence of paths.
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But which 2d surface? (I continue to speak about the abelian case

for the rest of this paragraph.) The difference in phase between

two possible choices is eie
∫
R−R′ F

Stokes
= eie

∫
V dF where ∂V = R −

R′ is the 3-volume whose boundary is the difference of the two

regions. The integrand vanishes by the Bianchi identity, which

is actually an identity if F = dA and A is smooth. You might

think this prevents magnetic sources, which appear on the RHS

of the Maxwell equation dF = ?jm. But actually
∫
V
dF only

appears here in the combination eie
∫
V dF , so magnetic sources are

perfectly consistent with independence of the choice of R, as long

as their charge q ≡
∫
V
dF =

∮
∂V
F is quantized ge ∈ 2πZ. This

is Dirac quantization.

Imagine inserting an infinitesimal rectangle to the path which

moves by dxµ then by dxν and then back and back. The difference

in the action on Φ is

dxµdxν [Dµ, Dν ]Φ = −iedxµdxνFµνΦ. (no sum on µ, ν) (4.14)

The commutator of covariant derivatives is not a differential operator, but a function

[Dµ, Dν ] = −ieFµν . (Note that this same maneuver defines the Riemann tensor in

terms of derivatives covariant with respect to coordinate changes.) This same relation

holds in the non-abelian case:

Fµν =
i

e
[Dµ, Dν ] = ∂µAν − ∂νAµ − ie[Aµ, Aν ].

This object is Lie-algebra-valued, so can be expanded in a basis: Fµν = FA
µνT

A, so

more explicitly,

FA
µν = ∂µA

A
ν − ∂νAAµ + efABCA

B
µA

C
ν .

Since it is made from products of covariant derivatives, [D,D]Φ 7→ Λ[D,D]Φ, it must

transform in the adjoint representation, F 7→ ΛFΛ−1, which in infinitesimal form

returns us to (4.10)

FA
µν 7→ FA

µν − fABCλBFC
µν .

In this exposition, Maldacena uses currency exchange an analogy to explain gauge

theory. Suppose we had three countries arranged in a triangle, each with its own paper

currency. There are exchange rates across each pair of borders. If these rates are

chosen poorly, an enterprising person can generate wealth by going around in a closed

loop (in the correct direction) exchanging currency at each border crossing.
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The fact that the choice of currency is arbitrary (12,000 Zoobels = 5 Zinkys) is a

gauge redundancy. The value one generates by going in a loop is like magnetic flux.

The further point is that the value of a given unit of paper currency is arbitrary, so

currency exchanges are like gauge transformations. If instead of using paper currency,

the countries used something with intrinsic value (like say baked goods) it would be

locally obvious if someone were doing something dumb. The intrinsic value of baked

goods (at least if everyone agreed about it) plays the role of a Higgs field. The local

obviousness is like a mass for the vector field. Maldacena has a nice appendix where

he makes the discussion quite concrete.

4.5 Actions for gauge fields

The Yang-Mills (YM) action (4.9) is a gauge invariant and Lorentz invariant local

functional of A. If the gauge field is to appear in D = ∂ + A it must have the same

dimension as ∂, so LYM has naive scaling dimension 4, like the Maxwell term, so

[g2] = 4 −D – it is marginal in D = 4. Notice that unlike the Maxwell term, LYM is

not quadratic in A: it contains cubic and quartic terms in A, whose form is determined

by the gauge algebra fABC . Non-abelian gauge fields interact with themselves in a very

definite way. This interaction is relevant in D < 4 and irrelevant in D > 4.

In even spacetime dimensions, another gauge invariant, Lorentz invariant local func-

tional of A is the total-derivative term Sθ = θ
∫

tr F
2π
∧ ... ∧ F

2π
with D/2 factors of F .

The D-form tr F
2π
∧ ... ∧ F

2π
= dω(A) is exact (e.g. in D = 4, in the abelian case,

F ∧ F = d(A ∧ F ), or in components, εµνρσFµνFρσ = 2∂µ (εµνρσAνFρσ); more gener-

ally, ω is the Chern-Simons form, more below). Because it is exact, this doesn’t affect

the equations of motion or perturbation theory, but it does matter non-perturbatively.

We’ll see (when we study anomalies) that for smooth gauge field configurations in a

closed spacetime, this functional is an integer. This means that θ is a periodic vari-

able, since it appears in the partition function only as eiθn with n ∈ Z. This coupling

θ violates CP symmetry (notice that F ∧ F has one time derivative and three spatial

derivatives) for θ 6= 0, π. In QCD, this coupling of the gluons is constrained to be

very small because it would give an electric dipole moment to the neutron, which the

neutron doesn’t seem to have; this mystery is called the strong CP problem.

In odd spacetime dimensions, we should consider the Chern-Simons (CS) term (the

D = 2 + 1 version of which we just encountered) which in the abelian case looks like

SCS[A]
abelian

=
∫
A ∧ F

2π
∧ ... ∧ F

2π
with (D − 1)/2 factors of F . (In the non-Abelian

case, there is an extra term to make its integral gauge invariant: in 3d, SCS[A] ∝
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∫
tr
(
A ∧ F + 2

3
A ∧ A ∧ A

)
.) This term does affect the equations of motion. It breaks

parity symmetry. Notice that in D = 2 + 1 it is more relevant than the Maxwell or

Yang-Mills term. Notice that the CS term is dangerous in the sense that the integrand

is not gauge invariant; this suggests that something interesting will happen if we put

such a thing on a space with boundary. It is a central ingredient in quantum Hall

physics in D = 2 + 1, where, for one thing, it gives the gauge field fluctuations a mass.

In general dimension, we can make more couplings out of just F if we take more

derivatives, but they will have higher dimension.

We can couple YM gauge fields to matter by returning to our starting point: e.g. if

ψ(x) 7→ ΛRψ(x) is a Dirac field transforming in some representation R of the gauge

group, then Dµψ =
(
∂µ − iTARA

A
µ

)
ψ also transforms in representation R, so

ψ̄iγµDµψ + V (ψ̄ψ)

is a gauge-invariant lagrangian density. The lowest-dimension couplings of A to matter

are determined by the representation matrices TAR , which generalize the electric charge.

You might expect that we would start doing perturbation theory in g now. There

is lots of physics there, but it takes a little while to get there. Instead let’s first think

about how we might define the thing non-perturbatively and see what we learn from

that.

4.6 Fermion path integrals

We’ll need these for our discussion of anomalies, and they are extremely useful for

doing perturbative gauge theory for QCD (which differs from Yang-Mills theory by

the addition of fermionic quarks), and even, perhaps surprisingly, for pure Yang-Mills

theory.

[e.g. Schwartz §14.6] Canonical fermion operators satisfy anticommutation relations

like {ψ(x), ψ̄(y)} = i~δd(x− y). If we formally take ~→ 0, the fermi fields are a bunch

of objects which anticommute and square to zero. Such things are called Grassmann

numbers

θiθj = −θjθi , i = 1..n

and the set of objects we get by multiplying and adding them (with coefficients in

C) is a Grassmann algebra. For n = 1, the most general element of the algebra is

g(θ) = a+ bθ. For n = 2, it is

g(θ1, θ2) = a+ bθ1 + cθ2 + dθ1θ2. (4.15)
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A Grassmann algebra has an even part (made of products of even numbers of thetas,

which therefore commute) and an odd part. I’ve named the object in (4.15) g(θ1, θ2) as

if it is a function of the Grassmann variables. This doesn’t really mean anything, but if

we go along with it, then (4.15) is actually Taylor’s theorem for Grassmann variables.

It’s very simple, there are only two terms in the expansion for each variable, 2n terms

altogether. A realization of Grassmann algebra that we’ve already seen is differential

forms.

Integration is just as easy and in fact is the same as taking derivatives:∫
ψdψ = 1,

∫
1dψ = 0.

With more than one grassmann we have to worry about the order:

1 =

∫
ψ̄ψdψdψ̄ = −

∫
ψ̄ψdψ̄dψ.

So ∫
dψ1 · · · dψnX = ∂ψ1 · · · ∂ψnX.

Notice that there are no limits of integration. All Grassmann integrals are like the

analog of ∫ ∞
−∞

dxf(x) =

∫ ∞
−∞

dxf(x+ a), if ∂xa = 0.

In fact the analogous condition is true:∫
(A+Bθ)dθ =

∫
dθ(A+B(θ + α)) if ∂θα = 0.

The only integral, really, is the gaussian integral:∫
e−aψ̄ψ︸ ︷︷ ︸

=1−aψ̄ψ

dψ̄dψ = a.

Many of these give∫
e−ψ̄iAij ·ψj

M∏
i=1

dψ̄i

M∏
i=1

dψi =

∫ M∏
i=1

dψ̄i

M∏
i=1

dψi

(
1− ψ̄Aψ +

1

2
ψ̄Aψψ̄Aψ + · · ·

)
(4.16)

=
1

n!

∑
perms,σ

(−1)σA1σ1A2σ2 · · ·AMσM (4.17)

= detA. (4.18)
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Here ψ̄ ·A ·ψ ≡
(
ψ̄1, · · · , ψ̄M

)
A11 A12 · · ·
A21

. . . · · ·
...

...
. . .


 ψ1

...

ψM

. Another way to get this expres-

sion is to change variables to diagonalize the matrix A. Notice that∫
e−ψ̄·A·ψdψ̄dψ = detA = e+tr logA

involves a sign in the exponent relative to the bosonic answer∫
e−φ

?·A·φdφ?dφ =
1

detA
= e−tr logA.

This is the same sign as the minus sign associated to fermion loops.

Correlation functions look like:〈
ψ̄ψ
〉
≡
∫
ψ̄ψe−aψ̄ψdψ̄dψ∫
e−aψ̄ψdψ̄dψ

= −1

a
= −

〈
ψψ̄
〉
.

If for many grassman variables we use the action S =
∑

i aiψ̄iψi (diagonalize A

above) then 〈
ψ̄iψj

〉
=
δij
ai
≡ 〈̄ij〉 (4.19)

or, in a general basis, 〈
ψ̄iψj

〉
= A−1

ij .

Wick’s theorem here is 〈
ψ̄iψ̄jψkψl

〉
= 〈̄il〉 〈j̄k〉 − 〈̄ik〉 〈j̄l〉 .

With sources, the general gaussian integral is∫
e−ψ̄iAij ·ψj+η̄iψi+ψ̄iηi

M∏
i=1

dψ̄i

M∏
i=1

dψi = eη̄A
−1η

∫ ∏
dψ̄dψe−(ψ̄−η̄A−1)A(θ−A−1η) = eη̄A

−1η detA.

Now we can take a continuum limit: ψi  ψ(x), f(ψi)  f [ψ]. The partition

function for a free fermion field is

Z[η̄, η] =

∫
[Dψ̄Dψ]ei

∫
dDx(ψ̄(i/∂−m)ψ+η̄ψ+ψ̄η+iεψ̄ψ) (4.20)

= det
(
i/∂ −m

)
ei
∫
dDx

∫
dDyη̄(y)(i/∂−m+iε)

−1
η(x). (4.21)

If we couple ψ minimally to a gauge field, the determinant (which here is an irrelevant

constant) becomes an effective potential for the gauge field.

[End of Lecture 14]
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4.7 Lattice gauge theory

We’ve seen that scalar field theory can emerge from a lattice model, such as the model

of balls and springs with which we began 215A. It can also emerge from a spin system,

with a two-state system at each site of a lattice. Such a lattice model is then a

non-perturbative unitary regulator of the QFT in question, and comes with many

advantages. One is that it means the QFT can arise as a low-energy description of

suitably-arranged condensed matter. Another is that the QFT can be simulated in

various ways. Depending on the signs appearing in the action this may involve Monte

Carlo sampling of the path integral.

The following beautiful construction was found by Wegner and Wilson and Polyakov;

a good review is this one by Kogut.

Consider discretizing euclidean spacetime into a hypercubic lattice (for simplicity).

On each link xy of the lattice we place a G-valued matrix Uαβ
xy . We define Uyx = U−1

xy ,

as we did for the comparator in (4.13). Three good examples to keep in mind (in

decreasing order of difficulty) are:

1. G = U(N), in which case each U is a complex N ×N matrix with UU † = 1. Here

α, β = 1..N .

2. G = U(1), in which case U is just a phase (a 1×1 matrix) Uxy = eiθxy , θxy ∈ [0, 2π).

3. G = Zn, in which case U = e2πi`/n, ` = 1, · · ·n, is a phase with Un = 1. For

n = 2, this is a classical spin living on the links of the lattice.

Please think of Uxy = Pei
∫ y
x Aµ(r)drµ as the comparator (or Wilson line) along the link

(except that there is no such degree of freedom as Aµ(r) at other values of r). As such,

we impose the gauge equivalence relation Uxy 7→ g†xUxygy, where gx ∈ G for each x. We

will accomplish this by two steps: by writing an action S[U ] which has this invariance,

and by integrating over {U} with an invariant measure:

Z =

∫ ∏
`

dU`e
−S[U ].

Here
∫
dU is the G-invariant (Haar) measure on G, which can be defined by the desider-

ata ∫
G

dU = 1,

∫
G

dUf(U) =

∫
G

dUf(V U) =

∫
G

dUf(UV ),∀V ∈ G .

For G = U(1), the Haar measure is just
∫ 2π

0
d̄ϕ; for G = Zn, it just 1

n

∑n
`=1. You can

figure out what it is for SU(2) (locally, it’s the round measure on S3). Notice the

following lovely advantage of these conditions: there is no need to gauge fix anything.
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This is a statistical mechanics problem of the thermodynamics of a bunch of classical

rotors (slightly fancy ones in the SU(N) case). The review by Kogut does a great job

of highlighting the fact that this class of problems is susceptible to all the tools of

statistical mechanics.

What action should we use? Here is a good way to make something invariant under

the gauge group: Consider the comparator for a closed path Cxx which starts at x and

ends at x:

W (Cxx) = Pe−i
∫
Cxx

A.

How does this transform? W (Cxx) 7→ g−1
x W (Cxx)gx, but, for non-abelian G, it’s still a

matrix! A gauge-invariant object is

W (C) ≡ trW (Cxx) = trPe−i
∫
Cxx

A

where the gx and g−1
x can eat each other by cylicity of the trace. The action should be

local. We can make something gauge invariant and as local as possible by considering

a path C which goes around a single plaquette of the lattice: C = ∂2. This is Wilson’s

action:

S[U ] =
1

2f 2

∑
2

ReS2, S2 ≡ W (∂2) = tr
∏
`∈∂2

U` = tr (Ux,x+dxUx+dx,x+dx+dyUx+dx+dy,x+dyUx+dy,x) .

Now let’s focus on the nonabelian case, such as G = SU(N), and take seriously

the idea that Ux,x+dx = e−i
∫ x+dx
x Aµdxµ , where Aµ(x) is an element of the Lie algebra

g = su(N). An application of the CBH31 formula esAesB = esA+sB+ s2

2
[A,B]+O(s3) shows

that for a plaquette oriented in the µν plane 2µν , with lattice spacing a,

ReS2µν
CBH
=

1

2f 2
Retr

(
e−ia

2Fµν +O(a3)
)

=
1

2f 2
Retr

(
1 − ia2Fµν −

1

2
a4FµνFµν +O(a5)

)
(no sum on µ, ν)

=
1

2f 2

(
tr1 − a4

2
trFµνFµν + ...

)
+O(a5)

= LYM(2) + const +O(a5).

In the last step the term linear in Fµν dropped out, either because trF = 0 (in the

non-abelian case) or because it is pure imaginary and drops out of the real part. The

coupling g is related to f in some way that can be figured out. So it is plausible that

this model has a continuum limit governed by the Yang-Mills action. Realizing this

possibility requires that the model defined by Z have a correlation length much larger

than the lattice spacing, which is a physics question.

31Charlie-Baker-Hotel? Campbell-Baker-Hausdorff.
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Before examining the partition sum, how would we add charged matter?

If we place fundamentals qx 7→ gxqx at each site, we can make gauge

invariants of the form (for example) q†xUxyUyzUzwqw, or most simply,

we can make a kinetic term for q by

Skin[q, U ] =
1

a#

∑
x,ˆ̀

q†xUx,x+ˆ̀qx+ˆ̀'
∫
dDx q̄(x)

(
/D −m

)
q(x) + ...

where ˆ̀ runs over the lattice generators, and where Dµ = ∂µ − iAµ is

the covariant derivative, and we used its definition (4.12).

The expression I’ve written is for a grassmann, spinor field; for bosonic fields the

second-order terms are the leading terms which aren’t a total derivative. There is

some drama about the number of components of the spinor field one gets. It is not

hard to get a massive Dirac fermion charged under a U(1) gauge field, like in QED. It

is impossible to get a chiral spectrum, like a single Weyl fermion, from a gaussian, local

lattice action; this is called the Nielsen-Ninomiya theorem. You might think ‘oh that’s

not a problem, because in the Standard Model there is the same number of L and R

Weyl fermions,’ but it is still a problem because they carry different representations

under the electroweak gauge group. The word ‘gaussian’ is a real loophole, but not an

easy one.

How do we get physics from the lattice gauge theory path integral Z? We need to

find some gauge-invariant observables (since anything we stick in the integrand that

isn’t gauge-invariant will average to zero). In the pure YM theory, a good one is our

friend the Wilson loop W (C) = tr
(∏

`∈C U`
)
' trPei

∮
C A. What physics does its

expectation values encode? Recall what happened when we added an external source

to measure the force mediated by various fields, for example in the Maxwell theory:

lim
T→∞

Z−1

∫
DA eiSMaxwell[A]+i

∫
AµJµ = e−iV (R)T .

Here we took Jµ(x) = ηµ0
(
δd(~x)− δd(~x− (R, 0, 0))

)
for t in an interval of duration T ,

and zero before and after, two charges are held at distance R for a time T . V (R) is the

energy of the resulting configuration of (here, electromagnetic) fields, i.e. the Coulomb

potential. If instead we let the charge and anticharge annihilate at t = 0 and t = T ,

this is a single charge moving along a rectangular loop CR×T in spacetime, with sides

R and T , and the result is just the expectation value of the associated Wilson loop.

Going back to Euclidean spacetime, this is

〈W (CR×T )〉 = Z−1

∫ ∏
dU e

− 1
2f2

∑
2 ReS2W (CR×T )

T�R' e−V (R)T ,
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where the LHS is the expectation value of a gauge invariant operator. There can be

some funny business associated with the corners and the spacelike segments, and this

is the reason that we look for the bit of the free energy which is extensive in T .

In the case of the Maxwell theory in the continuum, this is a gaussian integral,

which we can do (see the homework), and log
〈
e
i
∮
CR×T

A
〉
' −E(R)T − f(T )R with

E(R) ∼ 1
R

, goes something like the perimeter of the loop C. In the case of a short-

ranged interaction, such as from a massive gauge field, the perimeter law would be

more literally satisfied.

In contrast, a confining force between the charges would obtain if 〈W (CR×T )〉 T�R'
e−V (R)T with instead

V (R) = σR =⇒ F = −∂V
∂R

= −σ .

This is a distance-independent attractive force between the charges.

In this case log 〈W 〉 ∼ RT goes like the area of the (inside of the)

loop, so confinement is associated with an area law for Wilson loops.

A constant force means a linear potential, so it is as if the charges are

connected by a string of constant tension (energy per unit length) σ.

A small warning about the area law: with charged matter, the existence of an area

law may depend on the representation in which we put the external charges:

W (C,R) = trRPei
∮
C A

ATAR

where TAR are the generators of G in some representation R; this is the phase associated

with a (very heavy and hence non-dynamical) particle in representation R. For some

choices of R, it might be possible and energetically favorable for the vacuum to pop

out dynamical charges which then screen the force between the two external charges

(by forming singlets with them).

This happens if the energy stored in the string ∼ σR & 2Mq, the

threshold for producing the dynamical charges. That is, the string

connecting the external sources may be able to break. G = SU(N)

has a center ZN ⊂ SU(N) under which the adjoint is neutral, so

a Wilson loop in a representation carrying ZN charge (such as the

fundamental, in which it acts by ZN phases times the identity) cannot

be screened by pure glue. QCD, which has dynamical fundamentals,

is more subtle.

This point, however, motivates the study of the dynamics of lattice gauge theories

to address the present question: Where might such an area law come from? I’ll give

some hints for how to think about it.
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Hint 0: Monte Carlo simulations. By now, Monte Carlo simulation of lattice

gauge theory, and in particular actual QCD, is a giant industry. Its practitioners are

able to calculate the spectrum of hadrons to a few percent, with good agreement with

experiments. I’ll explain below how masses of hadrons are extracted from such a theory.

Hint 1: Strong coupling expansion. In thinking about an integral of the form∫
DU eβ

∑
2 S2W (C)

it is hard to resist trying to expand the exponential in β.

Unlike the perturbation series we’ve been talking about for months, this series

has a finite radius of convergence. To understand this, it is useful to recognize that

this expansion is structurally identical to the high-temperature expansion of a thermal

partition function. (This is why I’ve used the symbol β for the coupling constant in

front of the action.) For each configuration C, the function e−βh(C) is analytic in β

about β = 0 (notice that e−
1
T is analytic about T = ∞!). The only way to get a

singularity at β = 0 would be if the sum over configurations (in the thermodynamic

limit) did it; this would be a phase transition at T =∞; that doesn’t happen because

the correlation length inevitably goes to zero at T = ∞: every site is so busy being

buffeted by thermal fluctuations that it doesn’t care about the other sites at all.32

In the non-abelian case, we get to do all kinds of fun stuff with characters of the

group. For simplicity, let’s focus on an abelian example, which will have a similar

structure (though different large-β (weak coupling) physics). So take U` = eiθ` ∈ U(1),

in which case

S2µν [U ] = − (1− cos θµν) , θµν(x) = θµ(x+ν)−θµ(x)−θν(x+µ)+θν(x) ≡ ∆νθµ−∆µθν(x).

First let’s consider the case where the world is a single plaquette. Then, using the

identity
∫ 2π

0
d̄θ einθ = δn,0,

〈W (2)〉 =

∫ ∏
`

dU` U1U2U3U4︸ ︷︷ ︸
≡S2

(
1 + β(S2 + S†2) +

1

2
β2
(
S + S†

)2
+

1

3!
β3
(
S + S†

)3
+ · · ·

)
= β 〈S2S−2〉︸ ︷︷ ︸

=1

+
β3

2
〈S22S−22〉+O(β5) = βA(2)

(
1 +O(β2)

)
= e−σ(β)Area (4.22)

with σ(β) = | ln β| is the string tension in this crude approximation. Here the area of

the loop was just 1. I’ve written S−2 ≡ S†2 and S22 = S2
2, the latter of which is only

true in abelian cases.
32For a much more formal and, I think, less illuminating proof, see for example J-M Drouffe and

J-B Zuber, Physics Reports 102 (1983) section 3.1.2. Thanks to Tarun Grover for framing the above

argument.
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If instead we consider a model with more dofs and a loop that

encloses many plaquettes, we must pull down at least one fac-

tor of βS†2 for each plaquette, in order to cancel the link fac-

tors in the integrand. We can get more factors of beta if we

pull down more cancelling pairs of βnSn2S
n
−2, but these terms are

subleading at small β. The leading contribution is 〈W (C)〉 =

e−σ(β)Area (1 +O(β2)), where ‘Area’ denotes the area bounded by

the curve C. an area law.

This area-law behavior of the Wilson loop in the strong-coupling expansion is the

analog of the fact that in a spin system like the Ising model at high temperature, the

correlation functions are short-ranged, 〈sxs0〉 ∼ e−|x|/ξ – the correlations are short-

ranged. Since the series converges, this conclusion can be made completely rigorous,

and only charge-neutral excitations have finite energy in the thermodynamic limit. In

what sense is confinement a mystery then? Well, a hint is that our argument applies

equally well (and in fact the calculation we did was) for abelian gauge theory! But

QED doesn’t confine – we calculated the Wilson loop at weak coupling and found a

perimeter law – what gives?

The answer is that there is a phase transition in between weak and

strong coupling, so the weak coupling regime is not an analytic

continuation of the strong coupling series answer. Ruling out this

possibility in Yang-Mills theory would be lucrative.
[End of Lecture 15]

In fact, though, the Wilson loop expectation itself can exhibit a phase transition,

even if other observables don’t. I’ve drawn the pictures above as if the world were two-

dimensional, in which case we just cover every plaquette inside the loop. In D > 2, we

have to choose a surface whose boundary is the loop. Rather, 〈W 〉 is a statistical sum

over such surfaces, weighted by βarea:

〈W (C)〉 =
∑

S|∂S=C

βArea(S). (4.23)

Such random-surface models often exhibit a roughening transition as β becomes larger,

to a regime where floppy surfaces are not suppressed.

The same technology can be used to study the spectrum of excitations of the gauge

theory, by considering correlations like〈
SR(t)S†R(0)

〉
c

=
∑
α

|cRα |2e−mα(R)t (4.24)

where SR is the trace of a Wilson loop in representation R, around a single

plaquette, and the two loops in question are separated only in time and

are parallel. The subscript c means connected.
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The right hand side is a sum over intermediate, gauge invariant states with the right

quantum numbers, and mα(R) are their masses. This is obtained by inserting a com-

plete set of energy eigenstates.

In strong coupling expansion, we get a sum over discretized tubes of pla-

quettes, with one boundary at each loop (the connected condition prevents

disconnected surfaces, and removes the contribution of the vacuum from

the sum in (4.24)), the minimal number of plaquettes for a hypercubic

lattice is 4t, giving 〈
SR(t)S†R(0)

〉
c
∼ Aβ4t

(
1 +O(β2)

)
and the smallest glueball mass becomes m0 ∼ 4| ln β|, similar to the scale of the

string tension. Actually, the corrections exponentiate to give something of the form

m0(R) = −4 ln β+
∑

kmk(R)βk. (For more on that, see e.g. the monograph by Montvay

and Münster called Quantum Fields on a Lattice.)

Hint 2: monopole condensation and dual Meissner effect.

[Banks’ book has a very nice discussion of this.] Recall that a single magnetic

monopole is not a finite energy situation inside an infinite superconductor, because it

has a tensionful Abrikosov flux string attached to it. A monopole and an antimonopole

are linearly confined, with a constant force equal to the string tension.

On the other hand, electric-magnetic duality is a familiar invariance of Maxwell’s

equations:

∂µFµν = J (e)
ν , ∂µF̃µν = J (m)

ν (4.25)

is invariant under the replacements

Fµν → F̃µν ≡
1

2
εµνρσF

ρσ, J (e)
ν → J (m)

ν .

In doing a weak-coupling expansion (e.g. as we did in QED), we make a choice (having

not seen magnetic charges, they must be heavy) to solve the second equation of (4.25)

by introducing a smooth vector potential Aµ via

Fµν(x) = ∂µAν − ∂νAµ +
1

2
εµνρσ

∫
d4yJ (m)(y)σfρ(x− y)

with ∂ρf
ρ(x) = δ4(x). Here we are treating the magnetic sources as fixed, e.g. because

they are heavy. The support of the function fρ is called the Dirac string.
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In this description, a monopole is placed at the end of a long

and infinitely thin solenoid, which carries away its magnetic flux∫
sphere around monopole

B =
∫

cross-section of solenoid
B = g, and is invisible

classically. Quantumly, it could be detected by Aharonov-Bohm ef-

fect of a charged particle going around it eie
∮
A = eie

∫
B = eieg unless

eg ∈ 2πZ, Dirac quantization again. (For particles with both elec-

tric and magnetic charge (they are called dyons), the condition is

q1m2 − q2m1 ∈ 2πZ.)

So, the duality interchanges electric and magnetic things. If condensation of elec-

tric charge (meaning 〈|Φ|〉 = v for some electrically charged field Φ) means that Aµ is

massive (Anderson-Higgs effect) and that monopoles are confined by tensionful mag-

netic flux tubes, then we can just replace the relevant words to learn the following:

Condensation of magnetic charge 〈|Φm|〉 6= 0 means that some dual photon (Ãµ with

dÃ = F̃ ) is massive, and that electric charges are linearly confined by tensionful electric

flux tubes.

This was pointed out by Mandelstam and ’t Hooft in 1974. In 1994 Seiberg and

Witten (hep-th/9407087) showed in detail that confinement actually happens by con-

densation of magnetic charge in a highly supersymmetric example. In abelian lattice

models, we can actually implement the duality transformation explicitly by various

path integral tricks. One path through this story (found in 1978 by Banks, Myerson,

Kogut and also Peskin) is described in Banks’ book. Along the way, one encounters

dualities with many familiar statistical mechanical models, such as the XY model. I

hope we will come back to this next quarter.
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5 Non-abelian gauge fields in perturbation theory

5.1 Gauge fixing and Feynman rules

Gauge fixing. [Peskin §16.2, Schwartz §25] Consider the partition function for pure

Yang-Mills theory (it will be easy to add quarks later):

Z ≡ 1

vol(G)

∫
[DA]eiS[A].

We assume that S[A] is some gauge-invariant functional of A, such as the Yang-Mills

action. The integral over [DA] goes over all configurations of the gauge field A. Here

vol(G) is the volume of the gauge group – a copy of G for each point in space. We

divide by it to cancel out the contributions from gauge-equivalent configurations of A.

So the path integral is ∞∞ . We would like

to make this cancellation more explicit by

fixing a gauge, G(A(x)) = 0. A cartoon of

the space of all gauge field configurations,

stratified into gauge orbits, is sketched at

right; we want to restrict the integration

to a gauge-fixed slice G(A(x)) = 0 (indi-

cated in red) which intersects each orbit at

one representative configuration. Perhaps

surprisingly, this will be an application of

fermion path integrals.

Note that the gauge-fixing function G(A(x)) must be a function of A(x) (we assume

it is a local condition) which is not gauge invariant, such as ∂µAµ(x). To implement

this, we will insert the following form of the number 1:

1 = ∆[A]

∫
[Dα]δ[G(Aα)]. (5.1)

Here
∫

[Dα] is the Haar measure on G and

Aαµ = (Aαµ)aT a = eiα·T
(
Aµ +

i

g
∂µ

)
e−iα·T (5.2)

=

(
Aaµ +

1

g
∂µα

a + fabcAbµα
c

)
T a +O(α2) (5.3)

=

(
Aaµ +

1

g
Dµα

a

)
T a +O(α2) (5.4)
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is the image of A under a gauge transformation with parameter αa(x) – at the last step

D is the covariant derivative on a field in the adjoint representation. The (Fadeev-

Popov) determinant ∆ defined by (5.1) is a Jacobian ∆[A] = det
(
δG(Aα)
δα

)
. A crucial

property of ∆ is that it is gauge invariant:

∆[Aα1 ]−1 (5.1)
=

∫
[Dα]δ[G(Aα+α1)] =

∫
[D (α + α1)]δ[G(Aα+α1)] = ∆[A]−1. (5.5)

(Here we used the fact that the measure on the group is invariant, [Dα] = [D (α + α1)].

Forgive me for switching to a more-convenient additive notation for the group law here.)

Inserting this form of 1 (5.1) into Z (and changing the order of integration) gives:

Z =
1

vol(G)

∫
[Dα]

∫
[DA]δ[G(Aα)]∆[A]eiS[A] (5.6)

=
1

vol(G)

∫
[Dα]

∫
[DAα]δ[G(Aα)]∆[Aα]eiS[Aα] (5.7)

Ã≡Aα
=

(
1

vol(G)

∫
[Dα]

)
︸ ︷︷ ︸

=1

∫
[DÃ]δ[G(Ã)]∆[Ã]eiS[Ã] . (5.8)

In the first step we use the fact that
∫

[DA] =
∫

[DAα], S[A] = S[Aα] and (5.5). In the

second step we change integration variables to Aα ≡ Ã, and promptly drop the tilde.

So we’ve cancelled the offending volume of the gauge group, and inserted a gauge-fixing

delta function in the path integral.

The only price is the FP determinant ∆ that we’ve acquired. What is it? It depends

on the choice of gauge fixing function. Let’s choose

G[A] = ∂µAaµ(x)− ωa(x).

Rather than picking a particular ω, let’s average over all possibilities with gaussian

measure:

1 = N(ξ)

∫
[Dω]e−i

∫
dDx

ω2(x)
2ξ .

The normalization factor is just a constant which we can forget. Therefore

Z = N(ξ)

∫
[DA]

∫
[Dω]δ[∂ · A− ω]︸ ︷︷ ︸

=1

e−i
∫
ω2

2ξ ∆[A]eiS[A]

(5.9)

= N(ξ)

∫
[DA]∆[A]e

i

(
S[A]−

∫ (∂·A)2

2ξ

)
. (5.10)
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Finally we must figure out what is ∆[A]. Comparing to (5.4) (and remembering

that there is a factor of δ[G] multiplying everything), ∆ is the determinant of the

operator
δG[Aα]

δα
=

1

g
∂µDµ.

Notice that in the abelian case, this is independent of A (the covariant derivative D

acting on the adjoint representation of U(1) is just ∂) and we can forget about it; that’s

why we didn’t bother doing this for QED.

∆ = det

(
1

g
∂µDµ

)
=

∫
[DcDc̄]ei

∫
dDxc̄(−∂µDµ)c.

At the last step we used the integration formula for gaussian grassmann integrals (and

absorbed a factor of g into the definition of c, and ignored a constant factor). c here is

a new complex scalar field in the theory (c̄ ≡ c†). Since D is the covariant derivative in

the adjoint, it’s a field in the adjoint of the gauge group. There’s just one weird thing

about it – it’s a fermionic field with second-order kinetic terms, a ghost!

There are all kinds of bad things about fermions with second-order kinetic terms

(see the discussion of the connection between spin and statistics around p. 138 here,

or Schwartz §12). But those bad things only happen if the particles occur in external

states. One purpose of a lot of the fancy stuff on this subject (such as BRST symmetry)

is guaranteeing that we’ll never make ghost particles while scattering the real particles.

The loops of the ghosts, though, are crucial for getting correct and unitary answers.

In particular, the optical theorem relates scattering states to particles appearing in

loops. The contributions to the imaginary part of loops from the ghosts are required

to cancel the unitarity-violating contributions from the unphysical polarization states

of the gluons. (For the details of what is being cancelled see Peskin pp. 508-511, and

for the cancellation itself, see 515-516.)

Altogether,

Z =

∫
[DADcDc̄]e

i

(
S[A]−

∫ (∂·A)2

2ξ
+
∫
c̄(−∂µDµ)c

)
. (5.11)

More generally, the ghosts are negative degrees of freedom whose role in life is to cancel

the unphysical contributions of the timelike and longitudinal components of the gluon

field. For example, in the free (g = 0) path integral in Feynman gauge, we have

Z(g = 0) =
(

det
(
−∂2

)−D
det
(
−∂2

)+2
)dim(G)/2

.

The contribution of the ghosts cancels two components’ worth of the contribution from

the gluons.
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Feynman rules. More explicitly, the ghost action is (after some IBP)

Lghost = c̄a
(
−∂2δab + g

←
∂
µ
fabcAcµ

)
cb.

The ghost propagator is then:〈
ca(x)c̄b(y)

〉
=

∫
d̄4k e−ik(x−y) i

k2 + iε
δab.

Let us use the lovely Yang-Mills action, S[A] =
∫
LYM

LYM = −1

4
F a
µνF

aµν , F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν .

The resulting gluon propagator is〈
Aaµ(x)Abν(y)

〉
=

∫
d̄4k e−ik(x−y) −i

k2 + iε
δab
(
ηµν − (1− ξ)kµkν

k2

)
The gluon propagator is just like the photon one, times a δab which conserves the color.

ξ = 1 is Feynman gauge, which I’ll use everywhere below. [End of Lecture 16]

The new Feynman rules are

=
i

k2
, = −gfabckµ,

= gfabc (ηµν(k1 − k2)λ + ηνλ(k2 − k3)µ + ηλµ(k3 − k1)ν) ,

= −ig2
(
fabef cde (ηµληνρ − ηµρηνλ) + fadef cbe (ηµληνρ − ηµνηρλ) + facef bde (ηµνηλρ − ηµρηνλ)

)
.

(Patterns: in the cubic coupling, the three terms cyclically permute the color and

kinematic indices. In the quartic coupling, the second term is obtained from the first

by the interchange (b, ν)↔ (d, ρ), and the third is obtained from the first by (b, ν)↔
(c, λ).)

Including quarks doesn’t mess with the gauge-fixing stuff. We’ll take

Lquarks = q̄
(
i /D −m

)
q = q̄i

(
γµ
(
i∂µδij + gAaµt

a
ij

)
−mδij

)
qj (5.12)

Here i, j are color indices. For QCD, the color indices are i, j = 1..3 and and taij are

the generators of SU(3) in the fundamental representation (a good basis of which are
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called Gell-Mann matrices). In (5.12) I’ve suppressed the flavor indices – quarks come

in various flavors, just like a muon is a different flavor of electron. I’ve also suppressed

the coupling to electromagnetism, which is of the form q̄Qqγ
µAµq, where Qq = 2/3 or

−1/3 for up- and down-type quarks respectively. Their fractional electric charge is one

way in which we know we haven’t seen free quarks.

With this addition, there’s also a quark propagator, and the qqg vertex is =

igγµta.

We’ll also need to add some counterterms

= −i
(
k2ηµν − kµkν

)
δabδ3 ←

= i/kδ2 ←

= igtaγµδ1 ← + .

On the right, I’ve indicated which one-loop diagrams require us to add these respective

counterterms.

5.2 QCD beta function

[Schwartz §26.6] We’re going to calculate the beta function for the QCD coupling

g. We’ll use dim reg, so the beta function is defined as β(gR) = µ∂µgR, where µ is

the scale that appears when we replace 4-dimensional integrals with D-dimensional

integrals, and where gR is the renormalized coupling. Here is a good device for working

out the beta function in dim reg. Very explicitly, the whole Lagrangian in D = 4 − ε
dimensions is

L = −1

4
Z3(∂A)2 + Z2q̄

(
i/∂ − ZmmR

)
q − Z1cc̄

a2ca (5.13)

− µε/2gRZA3fabc(∂µA
a
ν)A

µbAνc − 1

4
µεg2

RZA4

(
fabcAbµA

c
ν

) (
fadeAµdAνe

)
(5.14)

+ µε/2gRZ1A
a
µq̄γ

µtaq + µε/2gRZ3cf
abc∂µc̄

aAbµc
c (5.15)

The first line is the quadratic piece about which we’re expanding, and the next two

lines are interactions, all proportional to the (assumed-small) coupling gR. Here I’ve

written the counterterms in terms of ZX = 1 − δX for each term. Notice that there

are four counterterms (Z1, ZA3 , ZA4 , Z3c) all of which describe corrections to g – they

are related by gauge invariance, just like how in QED the vertex correction and the
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electron self-energy were related.33

The bare fields are the ones whose quadratic terms are just (∂A0)2 and q0i/∂q0 and

c̄02c0, i.e. A0
µ =
√
Z3Aµ, q

0 =
√
Z2q, c

0 =
√
Z1cc. The bare coupling is the coefficient

of the interaction written in terms of the bare fields, e.g.

Lqqg = µ
4−D

2 gRZ1Z
−1/2
3 Z−1

2︸ ︷︷ ︸
=g0

A0a
µ q̄

0γµtaq0.

Now here comes the trick: the bare coupling doesn’t know anything about our choice

of µ.34 Therefore

0 = µ∂µg0 = µ∂µ

(
µ
ε
2 gRZ1Z

−1/2
3 Z−1

2 Z1

)
= g0

 ε

2
+

1

gR
µ∂µgR︸ ︷︷ ︸
=β(gR)

+µ∂µ

(
δ1 −

1

2
δ3 − δ2

)+O(g3) .

(5.16)

Now in MS, the counterterms δ will depend on µ through gR(µ) (at one loop they’ll

just be
g2
R

ε
times numbers), so we can use the chain rule:

µ∂µδ = µ
dgR
dµ

∂

∂gR
δ = β(gR)

∂δ

∂gR
.

Solving (5.16) perturbatively for β, we have

β(gR) = − ε
2
gR − gRµ∂µ

(
δ1 −

1

2
δ3 − δ2

)
+O(g4) (5.17)

= − ε
2
gR − gR β(gR)︸ ︷︷ ︸

=− ε
2
gR+O(g2

R)

∂gR

(
δ1 −

1

2
δ3 − δ2

)
+O(g4) (5.18)

= − ε
2
gR +

ε

2
g2
R∂gR

(
δ1 −

1

2
δ3 − δ2

)
+O(g4

R). (5.19)

So we need to know how the counterterms δ1,2,3 depend on the coupling. We could have

chosen a different term to focus on, which would have required knowing a different set

of the counterterms; we’d have to get the same answer by gauge invariance.

33Note that I also include the dimensional-analysis-restoring dim reg factor of µε/2 explicitly in L.

We can see that this is the right thing to do by rescaling Ã = gA so that the coupling appears only in

− 1
4g2 trF 2. In that case, the action and the coupling g are both dimensionless in D = 4− ε dimensions

if we write S = −
∫
dDxµ

D−4

4g2 trF 2. This is the same as replacing g → µε/2g.
34This is a different perspective than we have when the scale introduced in the renormalization

scheme is a UV cutoff. There, if we hold fixed the physical coupling we must vary the bare coupling

with the UV cutoff, and in fact its variation defines the beta function, as in §1.1. The two perspec-

tives are related to each other like active and passive transformations; the object under study is the

transformation itself which here is encoded in the beta function.
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Gluon vacuum polarization. The Ward identity in QCD still implies that the

gluon self-energy is transverse:

iΠµν
ab (q) = −iΠab

(
q2ηµν − qµqν

)
= + + + +

≡Mq +M3 +M4 +Mghost − i
(
k2ηµν − kµkν

)
δabδ3

through one loop. In Feynman gauge, we have

iMµνab
q (q) = = −trF (tatb) (ig)2 µ̄4−D

∫
d̄Dk

i

(q − k)2 −m2

i

k2 −m2
tr
[
γµ
(
/k − /q +m

)
γν (/k +m)

]
= trF (tatb)iMQED(e→ g). (5.20)

There are no surprises here – it looks just like the electron loop contribution to the

photon vacuum polarization. The color trace is trF (tatb) = TF δ
ab = 1

2
δab for the

fundamental representation. Since we’re interested in the UV-singular structure (recall

that we’re trying to compute the counterterms δ1,2,3), we can simplify our lives by

setting the quark masses to zero. Using exactly the same tricks as for QED, the

answer is then, near D = 4− ε,

iMµνab
q (q) = NfTF

(
q2ηµν − qµqν

)
δab

g2

16π2

(
−8

3

1

ε
− 20

9
− 4

3
ln

µ2

−q2
+O(ε)

)
(5.21)

where Nf is the number of flavors of quarks (e.g. up, down ... 6 altogether, so far),

counting Dirac multiplets.

More novel are the gluon and ghost loops:

iMµνab
ghost = = (−1)(−g)2

∫
d̄Dk

i

(k − q)2

i

k2
f cadkµfdbc(k − q)ν

(5.22)
= g2 µ̄4−D

(4π)D/2
δabC2(G)

∫ 1

0

dx

(
1

∆

)2−D/2(
ηµν
(

1

2
Γ

(
2− D

2

)
∆

)
+ qµqν

(
x(1− x)Γ

(
2− D

2

)))
.

The big (−1) is because the ghosts are fermionic. To get to the second line, we used

Feynman parameters and completed the square and did the integral over ` ≡ k + xq.

∆ ≡ x(x− 1)q2. The new ingredient is the color stuff.

Quadratic Casimir. Recall that the total angular momentum J2 = j(j+ 1)1 has

[J2, ~J ] = 0 – it’s a Casimir for SU(2), proportional to the identity on each irrep. This

works for any Lie algebra:

T 2 ≡ T aT a satisfies [T b, T 2] = 0,∀b.
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In any representation r then we have T ar T
a
r = C2(r)1d(r)×d(r) (by Schur’s lemma). In

particular, for the adjoint rep,

−
(
T aadjT

a
adj

)
bd

= (fa)bc(f
a)cd = fabcfacd ≡ C2(G)δbd. (5.22)

C2(r) is related to the normalization of the generators: trT ar T
b
r = c(r)δab (remember,

we chose c(fundamental) = 1
2
). Contracting with δab gives dim(r)C2(r) = dim(G)c(r).

For SU(N), C2(G) = N . See Peskin page 502 for a derivation.

iMµνab
3 = =

g2

2
µ̄4−D

∫
d̄Dk
−i

k2

−i

(k − q)2
facdf bcdNµν (5.23)

= −g
2

2

µ̄4−D

(4π)D/2
δabC2(G)

∫ 1

0

dx

(
1

∆

)2−D/2 (
ηµνA+ qµqνB + ηµνq2C

)
. (5.24)

The 1
2

is a symmetry factor, since gluons are real, the two internal gluon lines can be

exchanged. ∆ = x(x− 1)q2 is the same as before.

A = 3(D−1)Γ

(
1− D

2

)
∆, B = (6(x2−x+1)−D(1−2x)2)Γ

(
2− D

2

)
, C = (−2x2+2x−5)Γ

(
2− D

2

)
.

The term with A represents a would-be-quadratic divergence. In dim reg this shows

up as a pole at D = 2.

In the diagram which uses the quartic coupling, too, we find a quadratic divergence

M4 ∼
∫

d̄4k
k2 ∼ Λ2:

iMµνab
4 = =

ig2

2
µ̄4−D

∫
d̄Dk
−i

k2
ηρλδcd

(
fabef cde

(
δµλδ

ν
ρ − δµρ δνλ

)
+fadef cbe

(
δµλδ

ν
ρ − ηµνηρλ

)
+ facef bde

(
ηµνηλρ − δµρ δνλ

))
= −g2δabηµνC2(G)(D − 1)µ̄4−D

∫
d̄Dk

k2

(q − k)2

(q − k)2

= −g2δabηµνC2(G)(D − 1)µ̄4−D
∫ 1

0

dx

(
1

∆

)2−D/2(
−D

2
Γ

(
1− D

2

)
∆ + (1− x)2q2Γ

(
2− D

2

))
.

(5.25)

The monstrosity in the first line is just the quartic vertex. The first term vanishes by

antisymmetry δcdf cde = 0. At the second line we multipled by 1 = (q−k)2

(q−k)2 in order to

put the integral into the same form as the other terms. 35

35Actually, there is a sense in which this contribution is zero in dim reg. After the rewriting, it’s

still zero, but only after doing the x integral. How can it affect anything then? The difference after

the rewriting is merely that the cancellation of the pole at D = 2 happens in the integrand of the x

integral, rather than only after integration.
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The glue contributions to the gluon vacuum polarization (not including quarks yet,

since those are optional) are then

Mµνab
glue (q) = (M3 +M4 +Mghost)

µνab = δabC2(G)g2 µ̄4−D

(4π)D/2

∫ 1

0

dx

(
1

∆

)2−D/2

·ηµνΓ
(

1− D

2

)
∆

−1

2
+

3(D − 1)

2
− D(D − 1)

2︸ ︷︷ ︸
=− 1

2
(D−2)2

+ qµqνΓ

(
2− D

2

)
a + ηµνq2Γ

(
2− D

2

)
b


Here a = −3(x2−x+ 1) + D

2
(1− 2x)2 +x(1−x) and b = x2−x+ 5

2
− (1−x)2(D− 1).

The coefficient of Γ
(
1− D

2

)
has a factor of D − 2, which cancels the pole at D = 2.

Then using Γ
(
1− D

2

)
(D − 2) = −2Γ

(
2− D

2

)
, this term combines with the other two.

After some boiling using the x↔ 1− x symmetry, this is

Mµνab
glue (q) = δabC2(G)g2 µ̄4−D

(4π)D/2

∫ 1

0

dx

(
1

∆

)2−D/2

(ηµν − qµqν) Γ

(
2− D

2

)((
1− D

2

)
(1− 2x)2 + 2

)
D=4−ε

= C2(G) (ηµν − qµqν) δab g2

(4π)2

(
10

3

1

ε
+

31

9
+

5

3
ln

µ2

−q2
+O(ε)

)
.

Notice that compared to (5.21), the coefficient of the log (and of the pole in ε) has

the opposite sign. From this we conclude that to cancel the ε−1 pole in the vacuum

polarization (this is the MS scheme) we must take

δ3 =
1

ε

g2

16π2

(
10

3
C2(G)− 8

3
NfTF

)
, (5.26)

where the first term is from pure glue effects and the second term is from the quark

loop.

We’re almost there. To get the beta function we also need δ1 and δ2.

Quark self-energy. This determines δ2 and δm (the latter we won’t need). The

UV bit doesn’t care about the mass, so let’s set m = 0. Again it is just like QED

except for the color factors. The one-loop correction to the quark self-energy is

iΣij
2 (/p) =

∫
d̄Dktaikγ

µ i/kδkl

k2 + iε
tbljγµ

−iδab

(k − p)2 + iε

The color factors are

taikt
b
ljδ

abδkl =
∑
a

(tata)ij = C2(F )δij
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where C2(F ) is the quadratic Casimir in the fundamental representation, which36 for

SU(N) is C2(F ) = N2−1
2N

. The momentum integral is the same as in QED and we find

(for mq = 0)

Σij
2 (/p) =

g2

8π2
δijC2(F )

1

ε
/p+ finite . (5.27)

The quark wavefunction renormalization counterterm δ2 contributes as Σij = ...+δ2δ
ij/p,

so in MS we must set

δ2 =
1

ε

g2

16π2
(−2C2(F )) .

Vertex correction. The vertex correction gets two contributions at one loop.

= ig(tctatb)ijδ
bcΓµQED

where

ΓµQED = F1(p2)γµ +
iσµν

2m
pνF2(p2)

is identical to the QED answer with e replaced with g (notice that it’s useful to keep

the quark mass around for a bit here). The color factors are

tctatbδbc = tbtatb = tbtbta + tb[ta, tb] = C2(F )ta + ifabctbtc.

By antisymmetry of fabc, the second term is

ifabctbtc = ifabc
1

2
[tb, tc] = −1

2
fabcf bcdtd = −1

2
C2(G)ta.

Altogether, the divergent bit of this diagram is

= ig

(
C2(F )− 1

2
C2(G)

)
taijγ

µ g2

16π2

(
2

ε
+ ln

µ2

−p2
+ finite

)
.

The other diagram is new:

= igfabc(tctb)ijΓ
µ
new

36To check this take the trace of the BHS and compare with trtatb = 1
2δ
ab.
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with

−igΓµnew(p2) = (ig)2gµ̄4−D
∫

d̄Dkγρ
i

/k
γν

−i

(q + k)2

−i

(q′ − k)2
·(

ηµν (2q + q′ + k)
ρ

+ ηνρ (−q + q′ − 2k)
µ

+ ηρµ (k − 2q′ − q)ν
)

(I find the opposite sign from Schwartz here. This sign cancels against the one in

(5.28).) The horrible numerator comes from the 3-gluon vertex, but in computing the

UV divergence we can set the external momenta to zero. This gives

−Γµnew(p2 → 0) = g2µ̄4−D
∫

d̄Dk
γρ/kγν
k6

(ηµνkρ − 2ηνρkµ + ηρµkν)

= g2µ̄4−D
∫

d̄Dk

k6

(
2k2γµ − 2γρ/kγ

ρkµ
)

= g2

(
4− 4

D

)
γµµ̄4−D

∫
d̄Dk

k4
γργ

νγρ = (2−D)γν ,

∫
kµkν ... =

∫
k2

D
ηµν ...

= iγµ
g2

16π2

(
6

ε
+ 3 log

µ2

−p2
+ finite

)
where at the last step we put back the gluon momentum to make up the dimensions.

Finally the color factor is

fabc(tctb) =
1

2
ifabcf cbdtd = −i

1

2
C2(G)ta. (5.28)

Altogether, the divergent part of the qqg vertex at one loop is then

1

ε
igtaijγ

µ

((
2

(
C2(F )− 1

2
C2(G)

)
+ 3C2(G)

)
g2

16π2
+ δ1ε

)
=⇒ δ1 =

1

ε

g2

16π2
(−2C2(F )− 2C2(G)) .

Combining all of this information using (5.19), the QCD beta function is (dropping

the R subscripts on gR)

β(g) = − ε
2
g +

ε

2
g2∂g

(
δ1 −

1

2
δ3 − δ2

)
+O(g4)

D→4
=

g3

16π2

(
−2C2(F )− 2C2(G)− 1

2

(
10

3
C2(G)− 8

3
NfTF

)
− (−2C2(F ))

)
+O(g4)

= − g3

16π2

(
11

3
C2(G)− 4

3
NfTF

)
SU(N) with fundamental quarks

= − g3

16π2

(
11

3
N − 2

3
Nf

)
.

If there are not too many species of quarks (Nf < 6N = 18, which is true in the

Standard Model, where NF = 6), β is negative, in which case such a non-Abelian
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gauge theory is asymptotically free, as I’ve promised many times in the preceding

pages. [End of Lecture 17]

Defining a running coupling as in (1.66), and solving the resulting RG equation
d

d logM2 g = β(g) using the above beta function (integrating from M2 to |q2|) we find a

crucial plus sign relative to (1.66)

g2
eff(q2) =

g2

1 + g2

16π2C log
(
|q2|
M2

) , C ≡ 11

3
N − 2

3
Nf (5.29)

and the coupling grows as q decreases, and shrinks at large q. The former is consistent

with the conjecture that the strong coupling lattice calculation that shows confinement

is adiabatically connected to the continuum physics, and the latter means that we can

still calculate some things. Actually it is a bit tricky to define the effective coupling

in QCD, but (a more precise version of) this curve has been measured (see Peskin

fig. 17.23 and Schwartz §26.3).

Qualitative picture of asymptotic freedom. [Peskin §16.7] The sign of the

beta function in QED can be understood as charge screening by the vacuum – electron-

positron pairs fluctuate into existence, and respond to the presence of a source in such

a way as to decrease its field at long distance.

How does non-Abelian gauge theory manage to produce antiscreening? There is

certainly still screening from the quarks, and since the gluons are charged, they will

also produce screening. So it makes sense that too many quarks will spoil the soup.

But whence the terms of the opposite sign in the beta function?

Following Peskin §16.7, consider pure (no quarks) SU(2) gauge theory, in Coulomb

gauge ∂iA
ia = 0. In this gauge, we sacrifice Lorentz covariance for more manifest uni-

tarity – no ghosts, and no longitudinal and timelike polarization states. The equation

of motion for A0a is the Gauss law (in terms of Eia ≡ F 0ia):

gρa = DiE
ia = ∂iE

ia + gfabcAbiE
ic,

where ρ is the charge density (e.g. the number density of quarks if we included them in

the theory), and for SU(2), the structure constants are fabc = εabc. Instead of dynamical

quarks, let’s consider a static color source particle: ρa(x) = δ(3)(~x)δa1 pointing in a

particular color direction, so the equation we wish to solve is

∂iE
ia = gδ(3)(~x)δa1 + gfabcAbiEic. (5.30)

Let’s solve this perturbatively in g in several steps.

1. At leading order, the source produces a Coulomb field:
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~Ea(x) = gδ1ax̌
x2 . So far, this is just classical physics.

2. The quantum mechanics comes in here:

consider a fluctuation of the vector potential in the 2d

color direction Ab=2,i(~x), with support localized some-

where, call it x0, away from the origin. Suppose it points

in some direction, somewhat aligned with ~x, its displace-

ment from the source.

3. Here comes the iteration.

The second term on the RHS of (5.30) is then gεabc ~Ab ·
~Ec ∝ −δc3 ~A2 · ~E1, a sink for the color-electric field in the

3rd color direction.

4.
This produces a new Coulomb field ~E3(~x) ∼ − ~x−~x0

|x−x0|3

pointing towards x0.

5. Now look at the second term on the RHS of (5.30) again:

~∇ · ~E1 = ...+ gε123 ~A2 · ~E3

it is a source (sink) for the color field in direction 1 where
~A2 and ~E3 are parallel (antiparallel).

But if the fluctuation ~A2 points away from the source,

then in the region closer to the source, ~A2 · ~E3 > 0,

and farther from the source they are anti-aligned. This

produces a dipole source for ~E1 which points toward the

original charge, and therefore anti-screens its field.

Warning: on the other hand, if the fluctuation ~A2 points toward the original source

then this process produces a dipole pointing away from the original source, which

contributes to screening. I’m not sure if this picture can be made quantitative.
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Disclaimer. This discussion just scratches the surface of the physics of QCD!

Many measurable phenomena can be calculated using the machinery we’ve set up.

Please see Peskin §17 and Schwartz §32.
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6 Renormalization group, briefly

[Fradkin, 2d edition, chapter 4; Cardy; Zee §VI; Álvarez-Gaumé and Vázquez-Mozo, An

Invitation to QFT, chapter 8.4-5 (' §7.3-4 of hep-th/0510040)] The following discussion

describes a perspective that can (and should) be applied to any system of extensive de-

grees of freedom. This includes many statistical-mechanics systems, condensed-matter

systems and also QFTs in high energy physics. The great insight of Kadanoff and

Wilson about such systems is that we should organize our thinking about them by

length scale. We should think about a family of descriptions, labelled by the resolution

of our microscope.

6.1 Wilsonian perspective on renormalization

[Zee, §VI.8 (page 362 of 2d Ed.), Peskin §12.1]

Consider the φ4 theory in Euclidean

space, with negative m2 (and no φk terms

with odd k). This potential has two min-

ima and a Z2 symmetry that interchanges

them, φ → −φ. If we squint at a con-

figuration of φ, we can label regions of

space by the sign of φ (as in the figure

at right). The kinetic term for φ will

make nearby regions want to agree, just

like the J
∑
〈ij〉 σiσj term in the ferromag-

netic Ising model (J > 0). The potential

term discourages values of φ other than

the two minima. So the critical point described by taking m2 near zero is plausibly the

same as the one obtained from the usual Ising model on a lattice.37.

We will study the integral

ZΛ ≡
∫

Λ

[Dφ]e−
∫
dDxL(φ). (6.1)

Here the specification
∫

Λ
says that we integrate over field configurations φ(x) =

∫
d̄Dkeikxφk

such that φk = 0 for |k| ≡
√∑D

i=1 k
2
i > Λ. Think of 2π/Λ as the lattice spacing38 –

37For a more sophisticated argument for this equivalence, see pages 7-9 of Polyakov, Gauge Fields

and Strings.
38This cutoff on momenta is not precisely the same as the effects of a lattice; with a lattice, the

momentum space is periodic: eikxn = eik(na) = ei(k+ 2π
a )(na) for n ∈ Z. Morally it is the same.
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there just aren’t modes of shorter wavelength. We are using (again) a cutoff on the

euclidean momenta k2
E ≤ Λ2.

We want to understand (6.1) by a coarse-graining procedure. It will be just like

our discussion in §3, except instead of just two modes, we’ll do it for the whole field

theory. But the idea is the same: do the integral over the high-energy modes first, for

the reasons described in §3.

Break up the configurations into pieces:

φ(x) =

∫
d̄keikxφk ≡ φ< + φ> .

Here φ< has nonzero Fourier components only for

|k| ≤ Λ−δΛ and φ> has nonzero Fourier components

only for Λ − δΛ ≤ |k| ≤ Λ. Zee calls the two parts

‘smooth’ and ‘wiggly’. They could also be called

‘slow’ and ‘fast’ or ‘light’ and ‘heavy’.
We want to do the integral over the heavy/wiggly/fast modes to develop an effective

action for the light/smooth/slow modes:

ZΛ =

∫
Λ−δΛ

[Dφ<]e−
∫
dDxL(φ<)

∫
[Dφ>]e−

∫
dDxL1(φ<,φ>)

where L1 contains all the dependence on φ> (and no other terms).

These integrals are hard to actually do, except in a gaussian theory. But we don’t

need to do them to understand the form of the result. First give it a name:

e−
∫
dDxδL(φ<) ≡

∫
[Dφ>]e−

∫
dDxL1(φ<,φ>) (6.2)

so once we’ve done the integral we’ll find

ZΛ =

∫
Λ−δΛ

[Dφ<]e−
∫
dDx(L(φ<)+δL(φ<)) . (6.3)

To get a feeling for the form of δL (and because there is little reason not to) consider

the more general Lagrangian

L =
1

2
(∂φ)2 +

∑
n

gnφ
n + ... (6.4)

where we include all possible terms consistent with the symmetries (rotation invariance,

maybe φ→ −φ...). Then we can find an explicit expression for L1:∫
dDxL1(φ<, φ>) =

∫
dDx

(
1

2
(∂φ>)2 +

1

2
m2 (φ>)

2
+ ...

)
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(I write the integral so that I can ignore terms that integrate to zero such as ∂φ<∂φ>.)

This is the action for a scalar field φ> interacting with itself and with a (slowly-varying)

background field φ<. But what can the result δL be but something of the form (6.4)

again, with different coefficients? The result is to shift the couplings gn → gn + δgn.

(This includes the coefficient of the kinetic term and also of the higher-derivative terms

which are hidden in the ... in (6.4). You will see in a moment the logic behind which

terms I hid.)

Finally, so that we can compare steps of the procedure to each other, we rescale our

rulers. We’d like to change units so that the new
∫

Λ−δΛ is a
∫

Λ
with different couplings.

We accomplish this by defining

Λ− δΛ ≡ bΛ, b < 1.

In
∫

Λ−δΛ, we integrate over fields with |k| < bΛ. Change

variables: k = bk′ so now |k′| < Λ. So x = x′/b, ∂′ ≡ ∂/∂x′ =
1
b
∂x and wavefunctions are preserved eikx = eik

′x′ .

Plug this into the action∫
dDxLeff(φ<) =

∫
dDx′b−D

(
1

2
b2 (∂′φ<)

2
+
∑
n

(gn + δgn) (φ<)
n

+ ...

)

We can make this look like L again by rescaling the field variable: b2−D (∂′φ<)2 ≡
(∂′φ′)2 (i.e. φ′ ≡ b

1
2

(2−D)φ<):∫
dDxLeff(φ<) =

∫
dDx′

(
1

2
(∂′φ′)

2
+
∑
n

(gn + δgn) b−D+
n(D−2)

2 (φ′)n + ...

)

So the end result is that integrating out a momentum shell of thickness δΛ ≡ (1−b)Λ
results in a change of the couplings to

g′n = b
n(D−2)

2
−D (gn + δgn) .

This procedure produces a flow on the space of actions.

Ignore the interaction corrections, δgn, for a moment. Then, since b < 1, the

couplings with n(D−2)
2
−D > 0 get smaller and smaller as we integrate out more shells.

If we are interested in only the longest-wavelength modes, we can ignore these terms.

They are irrelevant. Couplings (‘operators’) with n(D−2)
2
− D < 0 get bigger and are

relevant.
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The mass term has n = 2 and (m′)2 = b−2m2 is always relevant for any D <∞. So

far, the counting is the same as our naive dimensional analysis. That’s because we left

out the δL term! This term can make an important difference, even in perturbation

theory, for the fate of marginal operators (such as φ4 in D = 4), where the would-be-big

tree-level term is agnostic about whether they grow or shrink in the IR.

Notice that starting from (6.1) we are assuming that the system has a rotation

invariance in euclidean momentum. If one of those euclidean directions is time, this

follows from Lorentz invariance. This simplifies the discussion. But for non-relativistic

systems, it is often necessary to scale time differently from space. The relative scaling

z in ~x′ = b~x, t′ = bzt is called the dynamical critical exponent.

The definition of the beta function and of a fixed point theory are just as in the

first lecture of this quarter.

If we do pick an example of an interaction with which to perturb the gaussian fixed

point, we will indeed find other fixed points. An important family of such fixed points

can be controlled by studying the theory in D = 4− ε dimensions, just as in dim reg.

For the case of a single scalar with an Ising (φ → −φ) symmetry that we’ve been

discussing, the beta function for the quartic term takes the form39

βλ = −b∂bλ(b) = −ελ+ aλ2 +O(λ4) (6.5)

with a > 0 a pure number, which has a zero at λ = ε/a. The calculation of β can

be done by explicitly integrating out momentum shells using Wick’s theorem, but in

practice is most easily done by the methods we learned earlier – the answer is the same.

This fixed point that we find in pertur-

bation theory is called the Wilson-Fisher

fixed point, and is under perturbative con-

trol when ε is small. It has a single relevant

perturbation preserving the φ → −φ sym-

metry, which is the mass term, and so we

expect to reach it by tuning a single param-

eter. This fixed point gives a good descrip-

tion of the critical point of Ising magnets.

The rates at which the couplings leave and

enter the fixed point determine the critical

exponents.

Bani

BBm%Bgg%

The generalization to systems with an O(N) symmetry is obtained by adding an N -

39Here I am using the high-energy convention for the sign of the beta function, so β points toward

the UV.
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valued index to the scalar field.

Important lessons.

• Elimination of modes does not introduce new singularities into the couplings. At

each step of the RG, we integrate out a finite-width shell in momentum space –

we are doing integrals which are convergent in the infrared and ultraviolet.

• The RG plays nicely with symmetries. In particular any symmetry of the regu-

lated model is a symmetry of the long-wavelength effective action.40

• Some people conclude from the field theory calculation of the φ4 beta function

that φ4 theory “does not exist” or “is trivial”, in the sense that if we demand that

this description is valid up to arbitrarily short distances, we would need to pick

λ(Λ =∞) =∞ in order to get a finite interaction strength at long wavelengths.

You can now see that this is a ridiculous conclusion. Obviously the theory exists

in a useful sense. It can easily be defined at short distances (for example) in terms

of the lattice model we mentioned at the beginning of this subsection. Similar

statements apply to QED.

• The corrections to the mass of the scalar field are of order of the cutoff. This

makes it hard to understand how you could arrive in the IR and find that an

interacting scalar field has a mass that is much smaller than the cutoff. Yet,

there seems to be a Higgs boson with m ' 125 GeV, and no cutoff on the

Standard Model in sight. This is a mystery.

• As Tony Zee says, a more accurate (if less catchy) name than ‘renormalization

group’ for what we’ve just described would be ‘the trick of doing the path integral

a little at a time’.

• The term ‘renormalization group’ is actually used for many rather different things

in physics. The Wilsonian framework I’ve just described makes no reference to

perturbation theory (so far) and is extremely general. In high energy physics, the

term is often used much more narrowly as a procedure for summing logarithms

in perturbation theory, like we did in (5.29).

[End of Lecture 18]

40The extra qualifier about the regulated model is important because some symmetries of continuum

classical field theories cannot be realized as symmetries of well-defined quantum field theories. We

will discuss this phenomenon, called anomalies, in the near future.
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6.2 Renormalization of composite operators and the Callan-

Symanzik equation

[Peskin §12.4] The Wilson-Fisher fixed point is an example of an interacting fixed

point, which we happen to be able to describe (for small ε) using the same variables

as the gaussian theory. Perturbing the Wilson-Fisher fixed point by the mass term,

a seemingly-innocuous quadratic operator, is then no longer quite so innocent. In

particular, we must define what we mean by the operator |φ|2! This is necessary to un-

derstand the correlation-length critical exponent, the power with which the correlation

length diverges as we tune to the critical point.

One way to define it (from the counterterms point of view, now, following Peskin

and Zinn-Justin) is by adding an extra renormalization condition41. We can define

the normalization of the composite operator O(k) ≡ |φ|2(k) by the condition that its

(amputated) 3-point function gives

〈OΛ(k)φ(p)φ?(q)〉amputated = 1 at p2 = q2 = k2 = −Λ2 .

The subscript onOΛ(k) is to emphasize that its (multiplicative) normalization is defined

by a renormalization condition at scale (spacelike momentum) Λ. Just like for the

‘elementary fields’, we can define a wavefunction renormalization factor:

OΛ ≡ Z−1
O (Λ)O∞

where O∞ ≡ φ?φ is the bare product of fields.

(6.6)

We can represent the implementation of this prescription diagramatically. In the dia-

gram above, the double line is a new kind of thing – it represents the insertion of OΛ.

The vertex where it meets the two φ lines is not the 4-point vertex associated with the

41Note that various factors differ from Peskin’s discussion in §12.4 because in this subsection, just

for fun, I am discussing a complex field φ 6= φ? (the case N = 2); this changes the symmetry factors

– for N = 1 there is an extra factor of 1
2 .
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interaction – two φs can turn into two φs even in the free theory. The one-loop, 1PI

correction to this correlator is (the second diagram on the RHS of the figure)42

(−λ)

∫ ∞
0

d̄D`
1

`2

1

(k + `)2
= −λ c

k4−D

where, using dim reg, c =
Γ(2−D

2 )
(4π)2 , and we know the k dependence of the integral by

scaling.

Imposing the renormalization condition requires us to add a counterterm diagram

(part of the definition of |φ|2, indicated by the ⊗ in the diagrams above) which adds

Z−1
O (Λ)− 1 ≡ δ|φ|2 =

λc

Λ4−D .

We can infer the dimension of (the well-defined) |φ|2Λ by writing a renormalization

group equation for our 3-point function

G(2;1) ≡
〈
|φ|2Λ(k)φ(p)φ?(q)

〉
.

The resulting equation (6.8), named after Callan and Symanzik, is the demand that

physics is independent of choices we’ve made in the renormalization procedure, in

particular, of arbitrary scale Λ at which we imposed the renormalization condition43.

G is related to the correlation function of the bare fields by

G(2;1) = Z−1
|φ|2
√
Zφ
√
Zφ?

〈
|φ|2∞(k)φ0(p)φ?0(q)

〉
. (6.7)

The dependence on Λ is in the coupling λ, and in the renormalization factors Z. So:

0
!

= Λ
d

dΛ
G(n;1) =

(
Λ
∂

∂Λ
+ β(λ)

∂

∂λ
+ nγφ − γO

)
G(n;1) . (6.8)

γO ≡ Λ ∂
∂Λ

logZO(Λ) is the anomalous dimension of the operator O, roughly the

addition to its engineering dimension coming from the interactions (similarly γφ ≡
1
2
Λ ∂
∂Λ

logZφ(Λ)). In perturbation theory, our Green’s function takes the schematic

form

G = (tree diagrams + 1PI loop diagrams + counterterm + external leg corrections)

(6.9)

42At higher order in u0, the wavefunction renormalization of φ will also contribute to the renormal-

ization of |φ|2.
43The same logic can be applied to correlation functions of only ‘elementary operators’. For that

discussion, see e.g. Peskin §12.2. The result is obtained just by leaving out the composite operators.
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(as you can see in (6.6)). The explicit dependence on Λ is all in the counterterms. For

our example with n = 2 the anomalous dimension of |φ|2 is

γ|φ|2 = (4−D)
Γ(2−D/2)

16π2
λ
D→4
=

2λ

16π2
.

Here’s a good reason to care about the anomalous dimension, and which explains

the name. What happens we add the operator OΛ to the Lagrangian density:

L = L0 + Λdg−DgOΛ

(where the factor of Λ is fixed by engineering dimensions so that g is dimensionless,

so dg = D − 2 in the case of φ2)? Let’s compute G = 〈φ1 · · ·φn〉 in this perturbed

theory. We can count the number of insertions of OΛ by counting powers of g and the

Callan-Symanzik equation for the n point function of φ becomes

0 =

Λ∂Λ + βλ(λ)∂λ + nγφ(λ) + (−γO + dg − 4)g∂g︸ ︷︷ ︸
=βO∂g

G . (6.10)

So the anomalous dimension of O determines how it runs when we use it to perturb the

action – it just gets added to its engineering dimension. What happened to dimensional

analysis? Well, renormalization required us to introduce a new scale in the problem

(in this case Λ), which doesn’t go away.

One final comment about defining and renormalizing composite operators: if there

are multiple operators with the same quantum numbers and the same scaling di-

mension, they will mix under renormalization. That is, in order to obtain cutoff-

independent correlators of these operators, their definition must be of the form

OiΛ =
(
Z−1(Λ)

)
ij
Oj∞

– there is a wavefunction renormalization matrix, and a matrix of anomalous dimensions

γij = −Λ∂Λ log
(
Z−1(Λ)

)
ij
.

‘Operator mixing’ is really just the statement that correlation functions like 〈OiOj〉
are nonzero.

Solution of the Callan-Symanzik equation. In the free theory, the Green’s

function of n φs (say in position space) satisfies (by dimensional analysis) the scaling

relation

Gn({sxi},m2) ≡ 〈φ(sx1) · · ·φ(sxn)〉S = sn(2−D)/2 〈φ′(x1) · · ·φ′(xn)〉S′ (6.11)
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where

x ≡ sx′, φ(x) ≡ s
2−D

2 φ′(x′) (6.12)

and S ′ is the action with the mass replaced by m′ = sm. Notice that s > 1 takes us to

the IR, where m′ gets more important.

With interactions, we must also include a renormalization scale, and dimensional

analysis in the renormalized theory implies

Gn({sxi}, {gI},Λ) = sn(
2−D

2 )Gn({xi}, {s4−dIgI}, sΛ) (6.13)

where in the φ4 theory {gI} = {m2, λ4, λ6 · · · }, and 4−dI is the engineering dimensions

of the coupling g, so {s4−dIgI} = {s2m2, λ4, s
−2λ6}.

So far this is just dimensional analysis. The Callan-Symanzik equation allows us

to include the effects of fluctuations in this scaling relation. It is just an ODE in Λ:

(Λ∂Λ + βI∂gI + nγφ)Gn = 0. (6.14)

In terms of the running couplings

Λ∂ΛgI(Λ) = βI(gI(Λ)) (6.15)

the solution relates G at different renormalization points:

Gn({x}, {gI(Λ1)},Λ1) = e−n
∫ Λ2
Λ1

γφ(Λ)d log ΛGn({x}, {gI(Λ2)},Λ2). (6.16)

Combining with the information from dimensional analysis:

Gn({sx}, {gI(Λ)},Λ)
(6.16)
= e−n

∫ Λ2
Λ γφ(Λ′)d log Λ′Gn({sx}, {gI(Λ2)},Λ2) (6.17)

(6.13)
= sn(

2−D
2 )e−n

∫ Λ/s
Λ γφ(Λ′)d log Λ′Gn({x}, {s4−dIgI(Λ/s)},Λ)

(6.18)

where in the last step I set Λ2 ≡ Λ/s. We learn that the effect of a rescaling x → sx

has three parts: (1) the rescaling by the engineering dimensions, (2) the rescaling by

the anomalous dimension, (3) the running of the coupling.

Consider for example the special case where a coupling sits at a fixed point g = g?

(and other couplings are zero). Then the anomalous dimension prefactor is

e−
∫ Λ2
Λ1

γφ(Λ′)d log Λ′ =

(
Λ2

Λ1

)−γ?
(6.19)

with γ? = γφ(g?), so (6.18) becomes

Gn({sxi}, g?,Λ) = sn( 2−D
2

+γ?)Gn({xi}, g?,Λ). (6.20)
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The system is scale invariant, but with scaling different from the result of a dimensional

analysis that doesn’t include the RG scale.

We can also include the contributions of other couplings as a perturbation of such

a fixed point. Near g = g?, the other couplings will have

Λ∂ΛgI ' γIJ(g?)gJ . (6.21)

Choosing a basis of couplings to diagonalize the matrix γIJ(g?) with eigenvalues γ?I ,

the running couplings are

gI(Λ1)

gI(Λ2)
=

(
Λ1

Λ2

)γ?I
. (6.22)

(6.20) becomes

Gn({sxi}, {gI(Λ)},Λ) = sn( 2−D
2

+γ?)Gn({xi}, {s4−dI−γ?I gI(Λ)},Λ). (6.23)

The couplings run according to their corrected dimensions at the fixed point.
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7 Effective field theory

7.1 Introduction to effective field theory

[Some nice lecture notes on effective field theory can be found here: J. Polchinski,

A. Manohar, I. Rothstein, D. B. Kaplan, H. Georgi, A. Manohar]

Having internalized Wilson’s perspective on renormalization – namely that we

should include all possible operators consistent with symmetries and let the dynamics

decide which are important at low energies – we are led immediately to the idea of an

effective field theory (EFT), or, how to do physics without a theory of everything. (You

may notice that all the physics that has been done has been done without a theory of

everything.) It is a weaponized version of selective inattention.

The basic idea is that the Hamiltonian (or the action) should contain all terms

consistent with symmetries, organized according to an expansion in decreasing rele-

vance to low energy physics. This is an implementation of the totalitarian principle of

physics, that anything that can happen must happen.

Diatribe about ‘renormalizability’. There is no reason to demand that a field

theory that we have found to describe physics in some regime should be a valid descrip-

tion of the world to arbitrarily short (or long!) distances. This is a happy statement:

there can always be new physics that has been so far hidden from us. Rather, an EFT

comes with a regime of validity, and with necessary cutoffs. As we will discuss, in a

useful implementation of an EFT, the cutoff implies a small parameter in which we

can expand (and hence compute). (In the example of Seff[q] of §3, the small parameter

is ω/Ω.)

Caring about renormalizibility is pretending to know about physics at arbitrarily

short distances. Which we definitely don’t. Even when theories are renormalizable,

this apparent victory is often false. For example, QED requires only two independent

counterterms (for the mass and for the fine structure constant), and is therefore by

the old-fashioned definition renormalizable, but it is superseded by the electroweak

theory above 80GeV. Also: the coupling in QED actually increases logarithmically at

shorter distances, and ultimately reaches a Landau pole at SOME RIDICULOUSLY

HIGH ENERGY (of order e+ c
α where α ∼ 1

137
is the fine structure constant (e.g. at

the scale of atomic physics) and c is some numerical number. Plugging in numbers

gives something like 10330 GeV, which is quite a bit larger than the Planck scale).

This is of course completely irrelevant for physics and even in principle because of the

previous remark about electroweak unification. And if not because of that, because

of the Planck scale. A heartbreaking historical fact is that Landau and many other

smart people gave up on QFT as a whole because of this silly fantasy about QED in

137
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an unphysical regime.

We will see below that even in QFTs which are non-renormalizable in the strict

sense, there is a more useful notion of renormalizability: effective field theories come

with a small parameter (often some ratio of mass scales), in which we may expand the

action. A useful EFT requires a finite number of counterterms at each order in the

expansion.

Furthermore, I claim that this is always the definition of renormalizability that we

are using, even if we are using a theory that is renormalizable in the traditional sense,

which allows us to pretend that there is no cutoff. That is, there could always be

corrections of order
(

E
Enew

)n
where E is some energy scale of physics that we are doing

and Enew is some UV scale where new physics might come in; for large enough n, this

is too small for us to have seen. The property of renormalizibility that actually matters

is that we need a finite number of counterterms at each order in the expansion in E
Enew

.

Renormalizable QFTs are in some sense less powerful than non-renormalizable ones

– the latter have the decency to tell us when they are giving the wrong answer! That

is, they tell us at what energy new physics must come in; with a renormalizable theory

we may blithely pretend that it is valid in some ridiculously inappropriate regime like

10330 GeV.

Notions of EFT. There is a dichotomy in the way EFTs are used. Sometimes one

knows a lot about the UV theory (e.g.

• electroweak gauge theory,

• QCD,

• electrons in a solid,

• water molecules

...) but it is complicated and unwieldy for the questions one wants to answer, so instead

one develops an effective field theory involving just the appropriate and important dofs

(e.g., respectively,

• Fermi theory of weak interactions (or QED or ...),

• chiral lagrangian (or HQET or SCET or hydrodynamics of quark-gluon plasma

or ...),

• Landau Fermi liquid theory (or the Hubbard model or a topological field theory

or ...),
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• hydrodynamics (or some theory of phonons in ice or ...)

...). As you can see from the preceding lists of examples, even a single UV theory

can have many different IR EFTs depending on what phase it is in, and depending on

what question one wants to ask. The relationship between the pairs of theories above

is always coarse-graining from the UV to the IR, though exactly what plays the role of

the RG parameter can vary wildly. For example, in the case of the Fermi liquid theory,

the scaling is ω → 0, and momenta scale towards the Fermi surface, not ~k = 0.

A second situation is when one knows a description of some low-energy physics up

to some UV scale, and wants to try to infer what the UV theory might be. This is a

common situation in physics! Prominent examples include: the Standard Model, and

quantized Einstein gravity. Occasionally we (humans) actually learn some physics and

an example of an EFT from the second category moves to the first category.

Instructions for EFT. Answer the following questions:

1. what are the dofs?

2. what are the symmetries?

3. where is the cutoff, Λ, on its validity?

Then write down all interactions between the dofs that preserve the symmetries, in an

expansion in derivatives, with higher-dimension operators suppressed by more powers

of the UV scale, Λ.

I must also emphasize two distinct usages of the term ‘effective field theory’ which

are common, and which the discussion above is guilty of conflating (this (often slip-

pery) distinction is emphasized in the review article by Georgi linked at the beginning

of this subsection). The Wilsonian perspective advocated above produces a low-energy

description of the physics which is really just a way of solving (if you can) the original

model; very reductively, it’s just a physically well-motivated order for doing the inte-

grals. If you really integrate out the high energy modes exactly, you will get a non-local

action for the low energy modes. This is to be contrasted with the local actions one

uses in practice, by truncating the derivative expansion. It is the latter which is really

the action of the effective field theory, as opposed to the full theory, with some of the

integrals done already. The latter will give correct answers for physics below the cutoff

scale, and it will give them much more easily.

Some more comments:
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• Sometimes (in condensed matter circles) this approach of just writing all terms

consistent with symmetries is called Landau theory or Landau-Ginzburg theory or

maybe Landau-Ginzburg-Wilson.

• Do not underestimate the difficulty of step 1 of the EFT instructions. As we’ll

see in some examples below, the correct low-energy dofs can look nothing at all like

the microscopic dofs.

• The Wilson RG justifies this procedure: coarse graining by integrating out short-

wavelength modes produces all terms consistent with the symmetries.

•When we say “what are the symmetries?” we mean the symmetries G of the (regu-

lated) microscopic theory. G must be a symmetry of the low-energy EFT44. Sometimes

new symmetries can emerge at low energies. This procedure explains how this happens:

if there are no relevant or marginal operators invariant under G which violate a sym-

metry K, then physics at lower and lower energies will be more and more K-symmetric.

Here are some interesting and/or important examples where EFT has been useful

(some of which we will discuss in more detail below) and where you can learn about

them:

• Hydrodynamics [Kovtun]

• Fermi liquid theory [J. Polchinski, R. Shankar, Rev. Mod. Phys. 66 (1994) 129]

• chiral perturbation theory [D. B. Kaplan, §4]

• heavy quark effective theory [D. B. Kaplan, §1.3, Manohar and Wise, Heavy

Quark Physics]

• random surface growth (KPZ) [Zee, chapter VI]

• color superconductors [D. B. Kaplan, §5]

• gravitational radiation from binary mergers [Goldberger, Rothstein, Porto]

• soft collinear effective theory [Becher, Stewart]

• magnets [Zee, chapter VI.5, hep-ph/9311264v1]

• effective field theory of cosmological inflation [Senatore et al, Cheung et al, Porto]

44Actually, there is a dumb loophole here: it may be that G or some subgroup of G simply doesn’t

act on the low-energy degrees of freedom. For example, we could have a microscopic system with

symmetry G and a completely trivial low-energy theory, with no degrees of freedom at all.
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• effective field theory of dark matter direct detection [Fitzpatrick et al]

• here is some advocacy for the effective field theory viewpoint in biology: [Phillips]

There are many others, the length of this list was limited by how long I was willing to

spend digging up references.

7.2 Fermi theory of Weak Interactions

[from §5 of A. Manohar’s EFT lectures] As another example of EFT, let’s think about

part of the Standard Model.

LEW 3 −
1

2

(
∂µW

+
ν − ∂νW+

µ

) (
∂µW−ν − ∂νW−µ)+MWW

+
µ W

−µ (7.1)

− ig√
2
ψ̄iγ

µPLψjW
+
µ Vij + terms involving Z bosons

Some things intermediate, off-shell W bosons can do: µ decay, ∆S = 1 processes,

neutron decay

If we are asking questions with external momenta less than MW , we can integrate

out W and make our lives simpler:

δSeff ∼
(

ig√
2

)2

VijV
?
k`

∫
d̄Dp

−igµν
p2 −M2

W

(
ψ̄iγ

µPLψj
)

(p)
(
ψ̄kγ

νPLψ`
)

(−p)

(I am lying a little bit about the W propagator in that I am not explicitly projecting

out the fourth polarization with the negative residue. Also, the W carries electric

charge, so the charges of ψ̄i and ψj in (7.1) must differ by one.) This is non-local at
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scales p >∼MW (recall the discussion of the subsection §3). But for p2 �M2
W ,

1

p2 −M2
W

p2�M2
W' − 1

M2
W

1 +
p2

M2
W

+
p4

M4
W

+ ...︸ ︷︷ ︸
derivative couplings

 (7.2)

SF = −4GF√
2
VijV

?
kl

∫
d4x

(
ψ̄iγ

µPLψj
)

(x)
(
ψ̄kγµPLψ`

)
(x)+O

(
1

M2
W

)
+kinetic terms for fermions

(7.3)

where GF/
√

2 ≡ g2

8M2
W

is the Fermi coupling. We can use this (Fermi’s) theory to

compute the amplitudes above, and it is much simpler than the full electroweak theory

(for example I don’t have to lie about the form of the propagator of the W-boson like I

did above). It was discovered first and used quite effectively long before the existence

of W s was suspected.

On the other hand, this theory is not the same as the electroweak theory; for

example it is not renormalizable, while the EW theory is (at least if we included the

Higgs sector, rather than just writing a mass term for the W s). Its point in life is to

help facilitate the expansion in 1/MW . There is something about the expression (7.3)

that should make you nervous, namely the big red 1 in the 1/M2
W corrections: what

makes up the dimensions? The short answer is derivatives of the Fermi fields. This

becomes an issue when we ask about loops in §7.4. [End of Lecture 19]
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7.3 The color of the sky

[from hep-ph/9606222 and nucl-th/0510023] Why is the sky blue? Basically, it’s be-

cause the blue light from the sun scatters in the atmosphere more than the red light,

and you (I hope) only look at the scattered light.

Here is an understanding of this fact using the EFT logic. Consider the scattering

of photons off atoms (in a gas) at low energies. Low energy means that the photon

does not have enough energy to probe the substructure of the atom – it can’t excite

the electrons or the nuclei. This means that the atom is just a particle, with some

mass M .

The dofs are just the photon field and the field that creates an atom.

The symmetries are Lorentz invariance and charge conjugation invariance and par-

ity. We’ll use the usual redundant description of the photon which has also gauge

invariance.

The cutoff is the energy ∆E that it takes to excite atomic energy levels we’ve left

out of the discussion. We allow no inelastic scattering. This means we require

Eγ � ∆E ∼ α

a0

= α2me � a−1
0 = αme � me �Matom (7.4)

where a0 = (αme)
−1 is the Bohr radius. Because of this separation of scales, we can

also ignore the recoil of the atom, and treat it as infinitely heavy.

Let’s call the field that destroys an atom with velocity v φv. vµvµ = 1 and vµ =

(1, 0, 0, 0)µ in the atom’s rest frame. The (Lorentz-singlet) Lagrangian can depend on

vµ. We can write a Lagrangian for the free atoms as

Latom = φ†viv
µ∂µφv .

This action is related by a boost to the statement that the atom at rest has zero energy

– in the rest frame of the atom, the eom is just ∂tφv=(1,~0) = 0. (If we didn’t define the

zero of energy to be at the rest mass, there would be an additional term γvMatomφ
†
vφv,

γv ≡ 1√
1−v2 .) Notice that the kinetic term φ†v

~∇2

2Matom
φv is a very small correction given

our hierarchy of scales (7.4).

So the Lagrangian density is

LMaxwell[A] + Latom[φv] + Lint[A, φv]

and we must determine Lint. It is made from local, Hermitian, gauge-invariant, Lorentz

invariant operators we can construct out of φv, Fµν , vµ, ∂µ (it can only depend on Fµν =

∂µAν − ∂νAµ, and not Aµ directly, by gauge invariance, because the atom, and hence
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φv, is neutral.). It should actually only depend on the combination φ†vφv since we will

not create and destroy atoms – there is a(n emergent) U(1) symmetry associated with

atom number conservation. (Notice that we didn’t have to specify the statistics of the

atoms or φv.) Therefore

Lint = c1φ
†
vφvFµνF

µν + c2φ
†
vφvv

σFσµvλF
λµ + c3φ

†
vφv
(
vλ∂λ

)
FµνF

µν + . . .

. . . indicates terms with more derivatives and more powers of velocity (i.e. an expansion

in ∂ · v). Which are the most important terms at low energies? Demanding that the

Maxwell term dominate, we get the power counting rules (so time and space should

scale the same way):

[∂µ] = 1, [Fµν ] = 2

This then implies [φv] = 3/2, [v] = 0 and therefore

[c1] = [c2] = −3, [c3] = −4 .

These interactions are all irrelevant; terms with more partials are more irrelevant.

What makes up these dimensions in the couplings ci? They must come from the

length scales that we have integrated out to get this description – the size of the atom

a0 ∼ (αme)
−1 and the energy gap between the ground state and the electronic excited

states ∆E ∼ α2me. For Eγ � ∆E, a−1
0 , we can just keep the two leading terms.

In the rest frame of the atom, these two leading terms c1,2 represent just the scat-

tering of E2 −B2 and E2 respectively. To determine their coefficients one would have

to do a matching calculation to a more complete theory (compute transition rates in

a theory that does include extra energy levels of the atom). But a reasonable guess is

just that the scale of new physics (in this case atomic physics) makes up the dimen-

sions: c1 ' c2 ' a3
0. (In fact the coefficient of B2 comes with extra factor of v/c which

suppresses it.) The scattering cross section then goes like σ ∼ c2
i ∼ a6

0; dimensional

analysis ([σ] = −2 is an area, [a6
0] = −6) then tells us that we have to make up four

powers with the only other scale around:

σ ∝ E4
γa

6
0.

(The factor of E2
γ in the amplitude arises from ~E ∝ ∂t ~A.) Blue light, which has about

twice the energy of red light, is therefore scattered 16 times as much.

The leading term that we left out is the one with coefficient c3. The size of this

coefficient determines when our approximations break down. We might expect this to

come from the next smallest of our neglected scales, namely ∆E. That is, we expect

σ ∝ E4
γa

6
0

(
1 +O

(
Eγ
∆E

))
.

The ratio in the correction terms is appreciable for UV light.
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7.4 Loops in EFT

Suppose we try to define the Fermi theory SF with a euclidean momentum cutoff

|kE| < Λ. We expect that we’ll have to set Λ ∼ MW . A simple example which shows

that this is problematic arises by asking about radiative corrections in the 4-Fermi

theory to the coupling between the fermions and the photon (or the Z boson).

We are just trying to estimate the magnitude of this correction, so don’t worry

about the factors and the gamma matrices:

∼ I ≡ 1

M2
W︸︷︷︸

∝GF

∫ Λ

d̄4k
1

k

1

k
tr (γ...)︸ ︷︷ ︸

∼
∫ Λ kdk∼Λ2∼M2

W

∼ O(1).

Even worse, consider what happens if we use the vertex coming from the
(

p2

M2
W

)`
correction in (7.2)

∼ I` ≡
1

M2
W

∫ Λ

d̄4k
1

k2

(
k2

M2
W

)`
∼ O(1)

– it’s also unsuppressed by powers of ... well, anything. This is a problem.

Fix: A way to fix this is to use a “mass-independent subtraction scheme”, such as

dimensional regularization and minimal subtraction (MS). The crucial feature is that

the dimensionful cutoff parameter appears only inside logarithms (log µ), and not as

free-standing powers (µ2).

With such a scheme, we’d get instead

I ∼ m2

M2
W

log µ I` ∼
(
m2

M2
W

)`+1

log µ

where m is some mass scale other than the RG scale (like a fermion mass parameter,

or an external momentum, or a dynamical scale like ΛQCD).

We will give a more detailed example next. The point is that in a mass-independent

scheme, the regulator doesn’t produce new dimensionful things that can cancel out the

factors of MW in the denominator. It respects the ‘power counting’: if you see 2`

powers of 1/MW in the coefficient of some term in the action, that’s how many powers

will suppress its contributions to amplitudes. This means that the EFT is like a

renormalizable theory at each order in the expansion (here in 1/MW ), in that there is
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only a finite number of allowed vertices that contribute at each order (counterterms

for which need to be fixed by a renormalization condition). The insatiable appetite for

counterterms is still insatiable, but it eats only a finite number at each order in the

expansion. Eventually you’ll get to an order in the expansion that’s too small to care

about, at which point the EFT will have eaten only a finite number of counterterms.

There is a price for these wonderful features of mass-independent schemes, which

has two aspects:

• Heavy particles (of mass m) don’t decouple when µ < m. For example, in a

mass-independent scheme for a gauge theory, heavy charged particles contribute

to the beta function for the gauge coupling even at µ� m.

• Perturbation theory will break down at low energies, when µ < m; in the example

just mentioned this happens because the coupling keeps running.

We will show both these properties very explicitly in the next subsection. The solution

of both these problems is to integrate out the heavy particles by hand at µ = m, and

make a new EFT for µ < m which simply omits that field. Processes for which we

should set µ < m don’t have enough energy to make the heavy particles in external

states anyway. (For some situations where you should still worry about them, see

Aneesh Manohar’s notes linked above.)

7.4.1 Comparison of schemes, case study

The case study we will make is the contribution of a charged fermion of mass m to the

running of the QED gauge coupling.

First some recapitulation: Recall that the QED Lagrangian is

−1

4
FµνF

µν − ψ̄ (i /D −m)ψ

with Dµ = ∂µ − ieAµ. By redefining the field Fµν = ∂µAν − ∂νAµ by a constant factor

we can move around where the e appears, i.e. by writing Ã = eA, we can make the

gauge kinetic term look like 1
4e2
F̃µνF̃

µν . This means that the charge renormalization

really comes from the vacuum polarization, the correction to the photon propagator:

. Recall that, by the Ward identity for gauge invariance, the vacuum polar-

ization takes the form

Πµν(q2) = Π(q2)

(
q2ηµν − qµqν

q2

)
≡ Π(q2)P µν(q).
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End of recapitulation.

The choice of scheme shows up in our choice of renormalization condition to impose

on Π(p2):

Mass-dependent scheme: subtract the value of the graph at p2 = −M2 (a very

off-shell, euclidean, momentum). That is, we impose a renormalization condition which

says

Π(p2 = −M2)
!

= 0 . (7.5)

In dim reg, the one-loop vacuum polarization correction satisfies the gauge invari-

ance Ward identity Πµν = P µνδΠ2 (unlike the euclidean momentum cutoff which is not

gauge invariant), with

δΠ2(p2)
Peskin p. 252

= − 8e2

(4π)D/2

∫ 1

0

dxx(1− x)
Γ(2−D/2)

∆2−D/2 µ̄ε

D→4
= − e2

2π2

∫ 1

0

dxx(1− x)

(
2

ε
− log

(
∆

µ2

))
. (7.6)

In the second line of (7.6), we expanded the Γ-function about D = 4; there are other

singularities at other integer dimensions.

Mass-dependent scheme: Now back to our discussion of schemes. In a mass-

independent scheme, we demand that the counterterm cancels δΠ2 when we set the

external momentum to p2 = −M2, so that the whole contribution at order e2 is :

0
(7.5)!
= Π

(M)
2 (p2 = −M2) = δ

(M)

F 2︸︷︷︸
counterterm coefficient for 1

4
FµνFµν

+ δΠ2(p2 = −M2)

=⇒ Π
(M)
2 (p2) =

e2

2π2

∫
dxx(1− x) log

(
m2 − x(1− x)p2

m2 + x(1− x)M2

)
.

Notice that the µs go away in this scheme.

Mass-Independent scheme: This is to be contrasted with what we get in a mass-

independent scheme, such as MS, in which Π is defined by the rule that we subtract

the 1/ε pole. This means that the counterterm is

δ
(MS)

F 2 = − e2

2π2

2

ε

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

. (7.7)

(Confession: I don’t know how to state this in terms of a simple renormalization

condition on Π2. Also: the bar in MS refers to the (not so important) distinction
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between µ̄ and µ.) The resulting vacuum polarization function is

Π
(MS)
2 (p2) =

e2

2π2

∫ 1

0

dxx(1− x) log

(
m2 − x(1− x)p2

µ2

)
.

Next we will talk about beta functions, and verify the claim above about the failure

of decoupling. First let me say some words about what is failing. What is failing – the

price we are paying for our power counting – is the basic principle of the RG, namely

that physics at low energies shouldn’t care about physics at high energies, except for

small corrections to couplings. An informal version of this statement is: you don’t need

to know about nuclear physics to make toast. A more formal version is the Appelquist-

Carazzone Decoupling Theorem, which I will not state (Phys. Rev. D11, 28565 (1975)).

So it’s something we must and will fix.

Beta functions. M : First in the mass-dependent scheme. The fermion contri-

bution to the beta function for the EM coupling is45

β(M)
e =

e

2
M∂MΠ2(M)(p2) = −1

2

(
e3

2π

)∫ 1

0

dxx(1− x)

(
−2M2x(1− x)

m2 +M2x(1− x)

)
+O(e5)

m�M' e3

2π2

∫ 1

0
dxx(1− x) = e3

12π2

m�M' e3

2π2

∫ 1

0
dxx(1− x)M

2x(1−x)
m2 = e3

60π2
M2

m2

. (7.11)

MS : β(MS)
e =

e

2
µ∂µΠ

(MS)
2 (p2) = −1

2

e3

2π2

∫ 1

0

dxx(1− x)︸ ︷︷ ︸
=1/6

µ∂µ log
m2 − p2x(1− x)

µ2︸ ︷︷ ︸
=−2

45What I’ve written here is a fancy way of writing it, since the RHS naively depends on p2, but does

not. Here is a derivation of the beta function for QED in this scheme (following the same logic as we

used in the discussion of the QCD beta function): The QED Lagrangian is L = − 1
4e2Rµ

εZ3(F 0
µν) + · · ·

where F 0 is the bare field. This means that the bare coupling is e0 = eRµ
ε/2Z

−1/2
3 . Here Z3 = 1+δF 2 .

The bare coupling knows nothing about our choice of M , and so

0 = M
d

dM
e0 = e0

(
ε

2
+

1

eR
β(M)
e − 1

2

1

Z3
M

d

dM
Z3

)
. (7.8)

Solving for β (and writing e ≡ eR) gives

β(M)
e = −eε

2
+
e

2
M

d

dM
δF 2 + ... (7.9)

In this scheme,

δF 2 = −δΠ2(p2 = −M2) =
e2

2π2

∫ 1

0

dxx(1− x)

(
2

ε
− log

(
m2 + x(1− x)M2

µ2

))
(7.10)

depends explicitly on M , and the bits where M d
dM hits e are higher order.
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=
e3

12π2
. (7.12)

46

Figure 1: The blue curve is the mass-dependent-scheme beta function; at scales M � m, the mass

of the heavy fermion, the fermion sensibly stops screening the charge. The red line is the MS beta

function, which is just a constant, pinned at the UV value.

Also, the MS vacuum polarization behaves for small external momenta like

Π2(p2 � m2) ' − e3

2π2

∫ 1

0

dxx(1− x) log
m2

µ2︸ ︷︷ ︸
�1,for µ�m! bad!

46Let me explain the expression for the beta function in the case of MS scheme. Following the same

logic as the previous footnote, the bare coupling knows nothing about our choice of µ, and so

0 = µ
d

dµ
e0 = e0

(
ε

2
+

1

eR
β(MS)
e − 1

2

1

Z3
µ
d

dµ
Z3

)
. (7.13)

Solving for β (and writing e ≡ eR) gives

β(MS)
e = −eε

2
+
e

2
µ
d

dµ
δF 2 + ... (7.14)

= −eε
2

+
e

2
βMS
e ∂eδF 2 + ... (7.15)

= −eε
2

+
e

2

(
−eε

2

)
∂eδF 2 + ... (7.16)

where in the last step we substituted the leading term for the beta function. In MS scheme, the

counterterm, given in (7.7), goes like 1
ε and we get the finite answer given above.
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As I mentioned, the resolution of both these prob-

lems is simply to define a new EFT for µ < m

which omits the heavy field. Then the strong cou-

pling problem goes away and the heavy fields do

decouple. The price is that we have to do this by

hand, and the beta function jumps at µ = m; the

coupling is continuous, though.

The couplings in the low energy EFT (here, a theory of just

the photon) are determined by matching: this means com-

pute a bunch of physical quantities in both descriptions, and

solve for the couplings in the IR theory in terms of those of

the UV theory.

Euler-Heisenberg Effective Action. What is this IR theory of just the photon,

at energies below the mass of the electron? Let’s play the EFT game. The dofs

are just the photon. The symmetries are: Lorentz and charge conjugation symmetry

(Aµ → −Aµ) and parity and time-reversal symmetry. Also in the redundant description

in terms of Aµ we must impose gauge invariance. These facts already mean that the

Lagrangian is just a function of Fµν . The UV cutoff is the mass of the electron.

What’s the action? Well, of course there is the Maxwell term.

L = − 1

4e2
FµνF

µν + c1Fµν∂ρ∂
ρF µν + c2(FµνF

µν)2 + c3(FµνF̃
µν)2 + · · · . (7.17)

The cubic term F ν
µF

ρ
ν F

µ
ρ is forbidden by C symmetry. [c1] = 2 so c1 ∝ 1

m2
e
. The F 4

operators have dimension eight, so [c2] = [c3] = 4, and we conclude that c2,3 ∝ 1
m4
e
.

In the UV theory, the F∂2F comes from the next term in the vacuum polarization

in an expansion in q2. The F 4 terms come from a loop of electrons with four external

photon lines. This implies that c2,3 ∝ α2

16π2 , where the 16π2 is always associated with

a loop in four dimensions. Using the full QED theory we can of course compute the

precise numerical factors. (The contributions from QCD are a topic of great current

interest because this appears as a sub-diagram in g − 2 of the muon, and dominates

the current theory uncertainty in that quantity.)
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The cross section for γγ → γγ is then

σγγ→γγ(ω) ∼ α4ω6

m8
e

(1 +O(ω2/m2
e)). (7.18)

The power of ω is determined by dimensional analysis so that [σ] = −2; the amplitude

is A ∼ ω4 from the four factors of F and ω−2 comes from the phase space measure.

This is a small cross section and process has not yet been observed.
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7.5 The Standard Model as an EFT.

The Standard Model. [Schwartz, §29]

L =

(
νL
eL

)
eR νR Q =

(
uL
dL

)
uR dR H

SU(3) - - - 2 2 2 -

SU(2) 2 - - 2 - - 2
U(1)Y −1

2
−1 0 1

6
2
3
−1

3
1
2

Table 1: The Standard Model fields and their quantum numbers under the gauge group. 2 indicates

fundamental representation, - indicates singlet. Except for the Higgs, each column is copied three

times; each copy is called a generation. Except for the Higgs all the matter fields are Weyl fermions

of the indicated handedness. Gauge fields as implied by the gauge groups. (Some people might leave

out the right-handed neutrino, νR, which is totally neutral and therefore would be hard to observe.)

Whence the values of the charges under the U(1) (“hypercharge”)? The condition

YL + 3YQ = 0 (where Y is the hypercharge) is required by anomaly cancellation. This

implies that electrons and protons p = εijkuiujdk have exactly opposite charges of the

same magnitude.

The Lagrangian is just all the terms that are invariant under the gauge group

SU(3) × SU(2) × U(1) with dimension less than or equal to four – all renormalizable

terms. This includes a potential for the Higgs, V (|H|) = m2
H |H|2+λ|H|4, where it turns

out that m2
H ≤ 0. The resulting vacuum expectation value higgses the Electroweak

part of the gauge group down to electromagnetism:

SU(2)× U(1)Y
〈H〉
 U(1)EM .

That is, the broken gauge bosons get masses from the Higgs kinetic term

|DµH|2|
H=

 0

v/
√

2

 with DµH =

(
∂µ − igW a

µ τ
a − 1

2
ig′Yµ

)
H

where Yµ is the hypercharge gauge boson, and W a, a = 1, 2, 3 are the SU(2) gauge

bosons. There are two massive W -bosons with electric charge ±1 (as described in

§7.2), with MW = vg
2

. The photon and Z boson are the linear combinations of Y and

W 3 which diagonalize the remaining mass terms:(
Aµ
Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
W 3
µ

Yµ

)
.
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Here tan θw ≡ g′

g
defines the Weinberg angle. The masses are Mγ = 0 and MZ =

MW

cos θw
< MW .

Fermion masses come from (dimension-four) Yukawa couplings

LYukawa = −Y `
ijL̄iHe

j
R − Y

u
ij Q̄

iHdjR − Y
d
ijQ̄

i
(
iτ 2H?

)
ujR + h.c.

The contortion with the τ 2 is required to make a hypercharge-invariant. Plugging in

the Higgs vev to e.g. the lepton terms gives −meēLeR+h.c. with me = yev/
√

2. There’s

lots of drama about the matrices Y which can mix the generations. The mass for the

νR (which maybe could not exist – it doesn’t have any charges at all) you can figure

out on the homework later.

Here is a useful mnemonic for remembering the table of quantum numbers (possibly

it is more than that): There are larger simple Lie groups that contain the SM gauge

group as subgroups:

SU(3)× SU(2)× U(1)Y ⊂ SU(5) ⊂ SO(10)

one generation = 10⊕ 5̄⊕ 1 = 16

The singlet of SU(5) is the right-handed neutrino, but if we include it, one generation is

an irreducible (spinor) representation of SO(10). This idea is called grand unification.

It is easy to imagine that the gauge group is actually the larger groups on the right,

and another instance of the Higgs mechanism accomplishes the breaking down to the

Standard Model. (The running of the respective gauge couplings go in the right direc-

tion with approximately the right rate to unify to a single value at MGUT ∼ 1016GeV .)

[End of Lecture 20]

Notice that this idea means leptons and quarks are in the same representations –

they can turn into each other. This predicts that the proton should not be perfectly

stable. Next quarter we’ll say more about this.
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