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1. Brain-warmers.

Consider the field theory with action

S[φ] =

∫
dd+1x

(
1

2
(∂µφ∂

µφ−m2φ2)− g

3!
φ3

)
.

(a) State the Feynman rules in position space.

(b) Draw the diagram which corrects the position-space two-point function at

order g2.

(c) Find the symmetry factor for this diagram.

2. Particle creation by an external source.

Peskin, problem 4.1. Compare this problem with the problem on the previous

problem set.

Consider the Hamiltonian

H = H0 +

∫
d3x (−j(t, ~x)φ(x))

where H0 is the free Klein-Gordon Hamiltonian, φ is the Klein-Gordon field, and

j is a c-number scalar function.

(a) Show that the probability that the source creates no particles is given by

P (0) =
∣∣〈0| T {e+i

∫
d4xj(x)φI(x)} |0〉

∣∣2.
(b) Evaluate the term in P (0) of order j2, and show that P (0) = 1− λ+O(j4)

where

λ =

∫
d̄3p

2Ep
|j̃(p)|2.

We will show below that λ = 〈N〉 is the mean number of particles created

by the source.
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(c) Represent the term computed in part 2b as a Feynman diagram. Now

represent the whole perturbation series for P (0) in terms of Feynman di-

agrams. Show that this series exponentiates, so that it can be summed

exactly P (0) = e−λ.

(d) Compute the probability that the source creates one particle of momentum

k. Perform this computation first to O(j) and then to all orders, using the

trick of the previous part to sum the series.

(e) [The direct way to do this part requires a piece of information which we

haven’t discussed yet, namely what is the correct measure over which to

integrate the momentum of the particles in the final state. Skip it for now.]

Show that the probability of producing n particles is given by the Poisson

distribution,

P (n) =
1

n!
λne−λ.

(f) Prove the following facts about the Poisson distribution:

∞∑
n=0

P (n) = 1, 〈N〉 ≡
∞∑
n=0

nP (n) = λ,

that is, P (n) is a probability distribution, and 〈N〉 = λ as predicted. Com-

pute the fluctuations in the number of particles produced 〈(N − 〈N〉)2〉.

3. Propagator corrections in a solvable field theory.

Consider a theory of a scalar field in D dimensions with action

S = S0 + S1

where

S0 =

∫
dDx

1

2

(
∂µφ∂

µφ−m2
0φ

2
)

and

S1 = −
∫
dDx

1

2
δm2φ2 .

We have artificially decomposed the mass term into two parts. We will do per-

turbation theory in small δm2, treating S1 as an ‘interaction’ term. We wish to

show that the organization of perturbation theory that we’ve seen lecture will

correctly reassemble the mass term.

(a) Write down all the Feynman rules for this perturbation theory.
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(b) Determine the 1PI two-point function in this model, defined by

iΣ ≡
∑

(all 1PI diagrams with two nubbins) .

(c) Show that the (geometric) summation of the propagator corrections cor-

rectly produces the propagator that you would have used had we not split

up m2
0 + δm2.

4. A background field. [This is a bonus problem. It is brand new, so please let

me know if you run into trouble.]

Consider the following action for a real scalar field Φ:

S[Φ] =

∫
dd+1x

1

2

(
∂µΦ∂µΦ−m2Φ2 − gφ(x)Φ2

)
.

The last term here is a cubic coupling between φ and Φ. But here we will treat

φ(x) as a fixed background field (analogous to j(x) on previous problems) which

acts as a spacetime-dependent mass for the dynamical field Φ.

(a) Show that the two-point Green’s function, G(x, y) ≡ 〈Ω|T Φ(x)Φ(y)|Ω〉,
satisfies the Schwinger-Dyson equation

δd+1(x− y) = i
(
∂2 +m2 + gφ(x)

)
G(x, y). (1)

(b) We would like to solve this differential equation. As a warmup, consider the

case g = 0. Here is a trick: add a fictitious additional time direction T(
∂T + i

(
∂2 +m2

))
G(x, y, T ) = δd+1(x− y)δ(T ) (2)

This is just a diffusion equation (in d+2 dimensions and with a funny factor

of i!). Show that given a solution to (2), you can find the solution of (1)

with g = 0 by

G(x, y) =

∫ ∞
0

dTG(x, y, T ). (3)

(c) Show that the solution to the diffusion equation (2) for an infinitesimal time

step T is

G(x, y, T ) =
1

(2πT )α
ea

(x−y)2
2T

+bm
2

2
T . (4)

Find α, a, b. Use this to construct the path integral representation

G(x, y, T ) =

∫ x(T )=y

x(0)=x

[Dx]e−i
∫ T
0 dτ(ẋµẋµ+m2).

3



(d) For the case of constant m2, the infinitesimal solution (4) actually works for

finite T . Show by differentiation that plugging (4) into (3) gives an integral

representation of the free Klein-Gordon propagator.

(e) Now let g 6= 0 and suppose that φ is slowly varying. Generalize the path

integral representation to include the dependence on φ.

(f) Consider a non-relativistic situation, where the spacetime points x and y

are separated by a timelike distance large compared to 1/m. Justify and

use stationary-phase methods to show that the dominant contribution to

the path integral is a straight-line trajectory between the two points x and

y. Evaluate the resulting amplitude as a functional of φ(x).

This calculation shows that the heavy particle made by the field Φ can be

treated as a source for φ propagating on a fixed path in spacetime.

(g) Redo the problem for a charged scalar field, Φ in the background of a vector

potential Aµ, with

S[Φ] =

∫
dd+1x

1

2

(
DµΦ?DµΦ−m2Φ2

)
, DµΦ ≡ ∂µΦ− iAµΦ.

It will help to recall that the action of a classical charged particle is
∫
dτ (ẋ2 + ẋµAµ(x)).
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