University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215A QFT Fall 2017 Assignment 7

Due 11am Thursday, November 16, 2017

1. Brain warmer. Mandelstam variables are Lorentz-invariant combinations of the kinematic variables in $2 \leftarrow 2$ scattering

$$s = (p_1 + p_2)^2, t = (p_1 - p_3)^2, u = (p_1 - p_4)^2$$

where p_i^{μ} are on-shell four-vectors $p_i^2 = m_i^2$ satisfying overall momentum conservation $p_1 + p_2 = p_3 + p_4$. Show that they are not independent but rather satisfy the relation

$$s + t + u = \sum_{i} m_i^2$$

where i runs over the four external particles.

2. Particle production by a source, continued.

Consider again the Hamiltonian

$$H = H_0 + \int d^3x \left(-j(t, \vec{x})\phi(x)\right)$$

where H_0 is the free Klein-Gordon Hamiltonian, ϕ is the Klein-Gordon field, and j is a c-number scalar function.

Show that the probability of producing n particles is given by the Poisson distribution,

$$P(n) = \frac{1}{n!} \lambda^n e^{-\lambda}.$$

Conclude that $\langle n \rangle = \lambda$.

3. Decay of a scalar particle.

Peskin, problem 4.2. Consider the following Lagrangian, involving two real scalar fields Φ and ϕ :

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \Phi \partial^{\mu} \Phi - M^2 \Phi^2 + \partial_{\mu} \phi \partial^{\mu} \phi - m^2 \phi^2 \right) - \mu \Phi \phi^2.$$

The last term is an interaction that allows a Φ particle to decay into two ϕ s, if the kinematics allow it. Calculate the lifetime of the Φ particle to lowest order in μ . What is the condition on the masses for a finite lifetime?