University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 217 Fall 2018 Assignment 2

Due 12:30pm Monday, October 15, 2018

This homework begins with two simple problems to warm up your brain.

1. Brain-warmers.

(a) Check from the 'bridge' equation $F=-T \log Z$ that $F=E-T S$ where E is the average energy and $S=-\partial_{T} F$ is the entropy.
(b) What is the relationship between the spin-spin correlation function $\left\langle s_{i} s_{j}\right\rangle$ and the probability that s_{i} and s_{j} are pointing in the same direction? (Hint: $\left(1+s_{i} s_{j}\right) / 2$ is a projector.)
2. Biased unrestricted random walk. Find the RMS size $R(M) \equiv \sqrt{\left.\left.\langle | \vec{R}_{M}\right|^{2}\right\rangle_{M}}$ of the biased unrestricted random walk (each step is drawn from the distribution $p(\vec{r}) \propto$ $\left.e^{-\frac{\left|\vec{r}-r_{0}\right|^{2}}{2 \sigma^{2}}}\right)$ of M steps. Show that when $M \gg 1$, this is $R(M) \rightarrow M\left|\vec{r}_{0}\right|$.
3. Behavior near fixed-points. Find the fixed points of the following map

$$
\binom{a^{\prime}}{b^{\prime}} \mapsto \mathcal{R}(a, b)=\binom{a}{b}=\binom{a-b+a^{2} / 2}{(2-a) b}
$$

Linearize the map about each of the fixed points and compute the scaling dimensions assuming this map is an RG transformation with zoom factor $\lambda=2$. Draw a phase portrait indicating the fixed points and some of the flows into and out of them. Be careful of the signs.
4. Other fixed points of random walk. [This problem is optional. Thanks to Brian Vermilyea for suggesting this example.] Show that the Lorentzian distribution $p_{\sigma}(\vec{r})=$ $\frac{\sigma / \pi}{\vec{r}^{2}+\sigma^{2}}$ is a fixed point of the coarse-graining transformation that takes $\vec{r} \rightarrow \vec{r}^{\prime}=\sum_{i=1}^{n} \vec{r}_{i}$, i.e.

$$
P\left(\vec{r}^{\prime \prime}\right)=p_{\sigma}(\vec{r})
$$

for some appropriate rescaling $r^{\prime \prime}=n^{a} r^{\prime}$.
5. Real-space RG for the SAW. Consider again the problem of a self-avoiding walk on the square lattice. Construct an RG scheme with zoom factor $\lambda=3$ (so that nine
sites of the fine lattice are represented by one site of the coarse lattice). Find the RG map $K^{\prime}(K)$, find its fixed points and estimate the critical exponent at the nontrivial fixed point. Is it closer to the numerical result than the $\lambda=2$ schemes discussed in lecture and by Creswick?

6. Ising model in 1 d by transfer matrix.

Consider a closed (periodic) chain of N classical spins $s_{i}= \pm 1\left(s_{N+1}=S_{1}\right)$ with Hamiltonian

$$
H=-J \sum_{i} s_{i} s_{i+1}-h \sum_{i} s_{i}+\text { const, } \quad s_{N+1}=s_{1}
$$

The partition function is $Z(\beta J, \beta h)=\sum_{\{s\}} e^{-\beta H}$; let's measure J, h in units of temperature, i.e. set $\beta=1$.
(a) Show that the partition function can be written as

$$
Z=\operatorname{tr}_{2} T^{N}
$$

where T is the 2×2 matrix

$$
T=\left(\begin{array}{cc}
e^{J+h} & e^{-J} \\
e^{-J} & e^{J-h}
\end{array}\right)
$$

(called the transfer matrix) and $\operatorname{tr}_{2} M=M_{11}+M_{22}$ denotes trace in this twodimensional space. Express Z in terms of the eigenvalues of T and find the free energy density $f=-\frac{T}{N} \log Z$ in the thermodynamic $(N \rightarrow \infty)$ limit. Plot the free energy for $h=0$ as a function of $x=e^{-4 J}$ for $0 \leq x \leq 1$.
(b) Find an expression for the correlation function

$$
G(m) \equiv\left\langle s_{i} s_{m+i}\right\rangle-\left\langle s_{i}\right\rangle\left\langle s_{i+m}\right\rangle
$$

using the transfer matrix. Show that as $N \rightarrow \infty$,

$$
G(m) \sim e^{-m / \xi}
$$

where $\xi=\frac{1}{\log \left(\frac{\lambda_{1}}{\lambda_{2}}\right)}$ where $\lambda_{1}>\lambda_{2}$ are eigenvalues of T. Note that $\xi \rightarrow \infty$ when $\lambda_{1} \rightarrow \lambda_{2}$. For what values of β, h, J does this happen?

