University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 217 Fall 2018 Assignment 3

Due 12:30pm Monday, October 22, 2018

- 1. Brain-warmer. Show that the relation $e^{2J'} = \cosh 2J$ can be rewritten as $v' = v^2$ in terms of $v \equiv \tanh J$.
- 2. Decimation of 1d Ising model in a field.

Consider again a closed (periodic) chain of N classical spins $s_i = \pm 1$ with Hamiltonian

$$H = -J \sum_{i} s_{i} s_{i+1} - h \sum_{i} s_{i} + \text{const}, \quad s_{N+1} = s_{1}$$

The partition function is $Z(\beta J, \beta h) = \sum_{\{s\}} e^{-\beta H}$; let's measure J, h in units of temperature, *i.e.* set $\beta = 1$.

Suppose that N is even.

(a) Decimate the even sites:

$$\sum_{s_{\text{even}}} e^{-H(s)} \equiv \Delta e^{H_{\text{eff}}(s_{\text{odd}})}.$$

More explicitly, identify the terms in H(s) that depend on any one even site, $H_2(s)$ and define its contribution to H_{eff} by

$$\sum_{s_2} e^{-H_2(s)} \equiv \Delta e^{-\Delta H_{\text{eff}}(s_1, s_3)}$$

Rewriting $H_{\text{eff}}(s_{\text{odd}}) = -J' \sum ss - h' \sum s - \text{const}$ in the usual form, find J', h'and the constant in terms of the microscopic parameters J, h.

- (b) Let $w \equiv \tanh \beta J, v \equiv \tanh \beta h$. Plot some RG trajectories in the v, w plane.
- (c) Find all the fixed points and compute the exponents near each of the fixed points.

3. High temperature expansion for Ising model.

In lecture, we rewrote the partition function of the nearest-neighbor Ising model (on any graph) as a sum over closed loops. Without a magnetic field, the loops were weighted by their length, just like in our discussion of SAWs. If we turn on a magnetic field, how does it change the form of the sum?