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1. Brain-warmer. Why is
∫
ddx~∇φ<(x) · ~∇φ>(x) = 0?

2. Practice with systematically ignoring small things.

In doing perturbative RG, as we are going to do for the next few weeks, it is very useful

to be systematic about ignoring corrections which are of the same size as corrections we

are not computing. To do this, it is useful to introduce (or keep track of) an expansion

parameter whose powers count orders of perturbation theory. By ‘of the same size’ I

mean corrections that come with the same number of powers of g.

In lecture, we found the leading correction to the mean field free energy (down by one

power of g), and found that the inverse susceptibility was

χ−1 = r0 + g0δ(r0) +O(g2
0)

where δ(r0) ∼
∫

d̄dq
q2+r0

is some known function of the bare coupling r0.

We assume that the parameter r0(T ) is analytic in the temperature near Tc. This

is the conservative assumption: the thing we are trying to explain is how physics

can become non-analytic in T at some finite T ; we don’t want to put it in from the

beginning. More precisely: we can rule out singular dependence of r0 on T because

non-analyticity requires the thermodynamic limit, and the microscopic couplings are

properties of finite chunks of the system.

The definition of the critical temperature Tc is the value of T where the correlation

length blows up. Use the susceptibility sum rule (you proved this on the last homework)

to relate this condition to χ(Tc).

Use the previous two pieces of input to prove the expression I claimed in lecture which

eliminates r and relates χ−1 directly to the deviation from the critical temperature

t ≡ T−Tc
Tc

:

χ−1(t) = c1t(1 + ∂tδ(t)) +O(g2)

where c1 is a non-universal constant. You will have to ignore all errors of order g2.

Determine the function ∂tδ.
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3. An example of the power of the RG logic.

Consider quantum mechanics of a single particle in d dimensions, with Hamiltonian

H =
p2

2m
+ V (q), [q, p] = i.

Consider the (say, euclidean) path integral for this problem,

Z =

∫
[dq]e−S[q], S[q] =

∫
dt
(m

2
q̇2 − V (q)

)
.

To be more precise, with periodic boundary conditions, Z(β) =
∫
q(t+β)=q(t)

[dq]e−S[q] =

tre−βH is the thermal partition function. Alternatively, instead of Z, we could consider

the Green’s function G(q1, t1; q2, t2) =
∫ q(t2)=q2
q(t1)=q1

[dq]e−S[q].

Working by analogy with our treatment of field theory, show that any smooth1 potential

V is a relevant perturbation of the free particle, i.e. the Gaussian fixed point with

H = p2

2m
.

Hint: change variables to φ(t) ≡
√
mq(t).

Use this to explain in words why the high energy asymptotics of the density of states

N(E) ≡ {# of eigenvalues of H less than E}

is given by the Weyl formula (even for V (q) 6= 0):

N(E) = Ed/2KdL
d + ...

where Kd = Ωd−1

(2π)d
as usual, and L is the linear size of the box in which we put the

particle (an IR cutoff).

Hint: we can represent the density of states by a path integral using an inverse Laplace

transform:

tr
1

ω −H
=

∫
dβ eβωZ(β)

and the relation

Im
1

ω + iε−H
= πδ(ω −H).

The fact that V (q) is smooth means we can Taylor expand it

V (q) =
∑
n

gnq
n.

1Some singular potentials are also relevant perturbations. If V (q) ∼ q−α, how big can α be for my

statement to remain true? Thanks to Brian Vermilyea for reminding me that a singular enough potential

will cause trouble.
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We may as well consider each qn separately; it will be interesting to allow n to be

negative. Repeating our analysis of coarse-graining the fast modes, and rescaling to

fix the kinetic term (really just specializing to d = 1), we have

Seff[q̃] =

∫
dt

(
1

2
˙̃q2 +

∑
n

b
n+2
2 (gn + δgn)q̃n

)

where q̃ ≡ b−
1
2 q< in order to preserve the kinetic term. So

g′n = b
n+2
2 (gn + δgn).

We see that as long as n > −2, this grows as b grows. (In perturbation theory, the

fluctuation effects δgn can’t change this conclusion.) Thus we conclude that any smooth

potential is a relevant perturbation of the gaussian fixed point.

Therefore, the effect of any smooth potential gets smaller at short times or high energies

– to get a given value of an at energy scale E/b, at scale E it had to be smaller by

a factor of b
n+2
2 . To make this more precise, represent the density of states in terms

of the path integral as in the hint. At large E, the integral over β is dominated by

the saddle point at β?, which sets E = −∂β logZ|β=β? . As long as the average energy

grows with temperature, this means that we need the high-temperature behavior of

Z(β), which is dominated by the fastest modes, described by taking b� 1 in the above

scaling.

We can see this more directly in the path integral representation of Z just by changing

variables: q̃ = b−1/2q, t̃ = t/b, β̃ = β/b, so that

Z(β) =

∫
[Dq]e−

∫ β
0 dt( 1

2
q̇2+V (q)) =

∫
[Dq̃]e−

∫ β̃/b
0 dt( 1

2
˙̃q2+

∑
n gnb

n+2/2q̃n) .

Now, if we want to evaluate this at asymptotically small β, we can just choose b� 1, in

which case we can treat all the potential terms as perturbations. Once we know that

the answer is given by the free particle answer, we can either inverse-Laplace transform

the free-particle partition function Z(β) =
(

2πmL2

β

)d/2
, or directly count states

N(E) = Ld
∫
∑
k2<2mE

d̄dk = LdKd(2mE)d/2/d,

which is the Weyl formula.
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