
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 217 Fall 2018
Assignment 9 (‘Final Exam’) – Solutions

Due 12:30pm, Wednesday, December 12, 2018

1. Brain-warmer. Explain why the Wilson-Fisher fixed point in 2 < d < 4 has only two

relevant operators, which may be associated with φ and φ2. What happened to φ3?

(For example, this was important in our discussion of scaling, where we were able to

relate the whole zoo of greek letters (critical exponents) to only two numbers yt, yh, the

scaling exponents for the two relevant operators, one of which breaks the symmetry.)

Clearly the Ising model critical point has two relevant perturbations (one of which

breaks the Z2 symmetry): the magnetic field and the temperature. How can this

be described by the φ4 field theory, which looks like it has three relevant operators

(φ, φ2, φ3), two of which break the Z2 symmetry?

φ is just an integration variable in Z =
∫

[Dφ]e−S[φ]. The φ3 term can be removed by

a field redefinition φ→ φ+ a.

2. Rotation invariance as an emergent symmetry.

Give an RG analysis which explains why the critical behavior of lattice magnets (which

do not have continuous spatial rotation symmetry) can be described by rotation-

invariant field theories.

To be more precise about what I am asking: consider a hypercubic lattice, and a

magnet with an O(n) symmetry, so that there is an n-component order parameter.

As in the problem on HW 8, analyze what perturbations of the rotation-symmetric

action preserve lattice rotations but not continuous rotations, and decide what are

their scaling dimensions at the Wilson-Fisher fixed point.

[I am re-posting this important problem from last homework, since there was universal

confusion about the fact that I was asking about spatial rotation symmetry, as opposed

to rotations in spin space.

Please note that a priori the spin rotation symmetry

S(r)a → RabSb(r), R ∈ O(n)

is completely independent of the spatial rotation symmetry

Sa
(
ri
)
→ Sa

(
Λijrj

)
, Λ ∈ O(d).
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Spin-orbit couplings break the product of these two groups down to a diagonal sub-

group; such couplings are present in Lorentz-invariant field theories, and in lattice

models involving large-Z atoms, but are often negligible.] No need to repeat if you

answered this question last time.]

Looking at the dispersion relation for a (hyper)cubic lattice is instructive. The fourier

transform of the adjacency matrix is

Ã(k) =
d∑

µ=1

(1− cos kµa)
ka�1
= kµk

µ +O
(
k4
)
.

The leading term in the small-wavenumber expansion is the familiar rotation-invariant

Laplacian term. The next term, which breaks rotation invariance, is O(k4). In general,

the answer is that the terms which break rotation invariance (like ∂2
xφ∂

2
yφ or φ

∑
i ∂

4
i φ)

are irrelevant operators.

Now you could ask me: what about a term like ∂xφ∂yφ? Or more generally suppose

we perturb (∇φ)2 by Aij∂iφ∂jφ. Here the answer is that I can diagonalize the matrix

δij + Aij to put the kinetic term in the form ai (∂iφ)2. Then, at the cost of a change

of coordinates xi → xi/
√
ai I can restore the familiar rotation-invariant form of the

kinetic term.

A symmetry of a fixed point which can be broken only by irrelevant operators is called

an emergent symmetry (by condensed matter physicists) or an accidental symmetry

(by high energy physicists). This difference of tone is very revealing.

3. OPE. Consider the Gaussian fixed point with O(n) symmetry. Compute the OPE

coefficients for the operators O2 ≡: φaφa :, O4 ≡: (φaφa)
2 :, and the identity operator

(here a = 1..n and the repeated index is summed). Use this information to compute

the beta function, find the Wilson-Fisher fixed point and the correlation length critical

exponent ν there.

Define normal-ordered operators as before – leave out the self-contractions. Eliding

the spatial dependence for brevity, as we did for the Ising model (n = 1), we find the

following algebra for the symmetric and relevant operators at the Gaussian fixed point:

O2O2 ∼ 2n1 + 4O2 +O4 + · · · (1)

O2O4 ∼ 01 + (4n+ 8)O2 + 8O4 + · · · (2)

O4O4 ∼ (8n2 + 16)1 + (32n+ 64)O2 + (8n+ 64)O4 + · · · (3)

(4)

Notice that setting n = 1 this reduces to the expression on page 121 of the lecture

notes. (Anticipating the scaling u? ∼ ε, r? ∼ ε2 we actually only really need C422 and

C442.)
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Using the result of conformal perturbation theory,

βr = 2r−4r2−2(4n+8)ru− (32n+64)u2 + ..., βu = εu−r2−16ru− (8n+64)u2 + · · ·

and the WF fixed point occurs at

u? =
ε

8(n+ 8)
, r? =

n+ 2

4(n+ 8)2
ε2

(notice that this parameter r differs from the one around eqn 6.32 of the notes by the

shift we made when we defined normal-ordered operators). Linearizing about the fixed

point gives

dr

d`
= 2r − 2(4n+ 8)ru? +O(ε2) = (2− 2

4n+ 8

8(n+ 8)
ε)r + · · ·

which is solved by

r ∼
(
e`
)1/ν

with

ν =
1

2
− 1

4

n+ 2

n+ 8
ε.

4. A proof of the Mermin-Wagner-Hohenberg-Coleman theorem.

(a) Bogoliubov-Schwartz inequality. Convince yourself that

〈AA?〉〈BB?〉 ≥ |〈AB?〉|2 (5)

where A,B are anything, and 〈...〉 means some statistical average.

For any x, 0 ≤ 〈(A+ xB)(A+ xB)?〉. Expand out the RHS and choose x =

− 〈AB
?〉

BB?
.

Now consider a microscopic realization of an XY model in d = 2 on a lattice with N to-

tal sites. At each site we place a 2-component unit-normalized spin ~Si = (cosφi, sinφi).

The Hamiltonian is

−H =
∑
〈ij〉

J cos (φi − φj) + h
∑
i

cosφi .

The magnetization is m = 〈cosφi〉. The claim is that for d ≤ 2, limh→0m must vanish

in the thermodynamic limit – no spontaneous breaking of the continuous symmetry

φi → φi + α.

To apply (5), we will (with cold-blooded foresight) choose

A ≡ 1

N

∑
j

e−iq·rj sinφj, B ≡ 1

N

∑
k

e−iq·rk∂φkH.
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(b) Show that ∑
q

〈AA?〉 =
1

N

∑
j

〈sin2 φj〉 ≤ 1.

(c) Show that

〈AB?〉 =
Tm

N
.

Here’s a hint:

0 =
1

Z

∫ 2π

0

∏
i

dφi∂φk
(
e−H/T sinφj

)
.

(More generally 0 =
∫ 2π

0

∏
i dφi∂φk (f(φ)) as long as f(φ) is a periodic function,

f(φ) = f(φ+ 2π). This kind of relation is sometimes called a Ward identity.)

(d) Show that

〈BB?〉 =
T

N2

∑
ij

e−iq(ri−rj)〈∂φi∂φjH〉.

Hint: use the same trick as in the previous part.

The required Ward identity is

0 =
1

Z

∫ 2π

0

∏
i

dφi∂φk
(
e−H/T∂φjH

)
.

(e) Show that (I have in mind a hypercubic lattice with coordination number z = 2d)

〈BB?〉 ≤ T

N

(
h+ J

(
z − 2

d∑
µ=1

cos (qµa)

))
≤ T

N

(
h+ J~q2

)
(f) Conclude that

1 ≥
∑
q

〈AA?〉 ≥ Tm2

N2

∑
q

1

h+ Jq2
.

Take the thermodynamic limit, and argue that the resulting inequality requires

lim
h→0

m = 0 for d ≤ 2.

Notice that the crucial icepick to the forehead here is the same infrared logarithmic

divergence of
∮
BZ

d̄2q
m+q2

that arose in the discussion of fluctuation corrections to

the magnetization.

(g) [optional bonus question] Generalize the argument to the O(n) model.

Parametrize the n-component spin as

~Si = (cosφi, sinφin̂)
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where n̂ is an (n− 1)-component unit vector. The magnetization is m = 〈cosφi〉.
From here everything goes through until part (e) where we need to take derivatives

of

H = −J
∑
〈kl〉

~Sk · ~Sl = −J
∑
〈kl〉

(cosφk cosφl + sinφk sinφln̂k · n̂l) .

The derivatives are

∂φi∂φjH = −2J

δ〈ij〉S̃i · S̃j −∑
〈i|`〉

δij ~Si · ~Sl

+ h cosφiδij.

Here ~Sk · ~Sl = cosφk cosφl + sinφk sinφln̂k · n̂l as in H above and

S̃k · S̃l ≡ (sinφk sinφl + cosφk cosφln̂k · n̂l) .

This is the inner product of the spins after the replacement φi → π/2− φi. Then∑
ij

e−i~q·~rij∂φi∂φjH = h
∑
i

cosφi +
∑
i

∑
〈i|j〉

(
S̃i · S̃j − e−i~q·~rij ~Si · ~Sj

)
.

Unlike the n = 2 case, the two terms are not of exactly the same form.

5. Long-range interactions and the lower critical dimension. Consider perturbing

an O(n) model by long-range interaction of the form

∆H = g

∫
d̄dq Φa(q)|q|rΦa(−q).

(a) [optional] What does ∆H look like in position space? What does∫
ddxddy

n∑
a

(Φa(x)− Φa(y))2

|x− y|d+r

look like in momentum space?

(b) Find the lower critical dimension as a function of r.

As in the lecture notes, we can consider the fluctuation corrections to a presumed

expectation value in the a = 1 direction:

〈S1〉 = 1− 1

2
〈σ2〉+ · · · = 1− (n− 1)

1

2

∮
d̄dk

Kk2 + gkr
+ · · ·

If r < 2, then kr � k2 near the IR limit k → 0 of the integral. Therefore∮
d̄dk

Kk2 + gkr
r<2∼
∫

1/L

d̄dk

gkr
∼
(

1

L

)d−r
.

When r > 2 then the g term doesn’t affect the IR region of the integral. So

dc = min(r, 2). (If r < 0 the integral is actually finite for all d, but r < 0 means

the interaction strength. actually grows with distance.)
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6. Perturbative RG for worldsheet (Edwards-Flory) description of SAWs.

In this problem we make quantitative the analogy

unrestricted RW:SAW::gaussian fixed point:WF fixed point.

Parametrize a continuous-time random walk in d dimensions by a trajectory ~r(t). Con-

sider the Edwards hamiltonian

H[~r] =
K

2

∫ L

0

ds

(
d~r

ds

)2

+
u

2

∫
|s1−s2|>a

ds1ds2 δ
d[~r(s1)− ~r(s2)]

with a self-avoidance coupling u > 0, a short-distance cutoff a, and an IR cutoff L. We

would like to understand the large-L scaling of the polymer size, R,

R2(L) ≡ 〈|~r(L)− ~r(0)|2〉 ∼ L2ν .

(a) Consider the probability density for two points a distance |s1−s2| along the chain

to be separated in space by a displacement ~x,

P (~x; s1 − s2) = 〈δd[~r(s1)− ~r(s2)− ~x]〉.

Show that the polymer size R can be obtained from its fourier transform P̃ (~q; s)

by the relation

R2(L) = −∇2
qP̃ (~q;L)|q=0. (6)

(So far this does not involve a choice of hamiltonian.)

−~∇2
qP̃ (~q;L)|q=0 = −~∇2

q

∫
ddxe−i~q·~xP (~x;L)|q=0 =

∫
ddx~x2P (~x;L) = R2(L).

(b) For the free case u = 0, compute the equilibrium polymer size R0(L) in terms of

d, L,K. It may be helpful to derive a relation of the form

〈ei
∫ L
0 ds~k(s)·~r(s)〉0 = e−

1
2K

∫ L
0 dsds′~k(s)·~k(s′)G(s−s′). (7)

P̃ (~q;L) =

∫
ddxei~q·~x〈δd(r(L)− r(0)− x)〉 (8)

= 〈ei~q·(~r(L)−~r(0))〉 (9)

= 〈ei~q·
∫ L
0 ds d~r

ds 〉 (10)

=
1

Z

∫
[D~r]e

−
∫ L
0 ds

(
K
2 ( d~rds)

2
−i~q· d~r

ds

)
(11)

= e−
L
2K

~q2 . (12)
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In the last step we completed the square. Therefore (using (6)

R(L)2 =
Ld

K
.

(c) Develop an expansion of P̃ (~q;L) to first order in u, using the cumulant expansion

as in §6.6 of the lecture notes. You should find an expression of the form R2(L) =

R2
0(L) (1 + δR2

1(L) +O(u2)) with

δR2
1(L) =

u

L

(
K

2π

)d/2 ∫ L

0

ds1

∫ L

s1+a

ds2
A2(s1, s2;L)

|s1 − s2|
d−2
2

.

Letting U ≡ −u
2

∫
ds1

∫
ds2δ

d(r(s1) − r(s2)), and denoting 〈...〉0 averages with

u = 0, we have

P (~R;L) = 〈δd(rL − r0 −R)〉 (13)

= 〈δd(rL − r0 −R)eU〉0 = 〈δd(rL − r0 −R)〉0 + 〈δd
(
~r(L)− ~r(0)− ~R

)
U〉0 +O(u2)

(14)

≡ P0(~R;L)− u

2

∫
ds1

∫
ds2〈δd

(
~r(L)− ~r(0)− ~R

)
δd(~r(s1)− ~r(s2))〉0 +O(u2)

(15)

= P0(~R;L)

(
1− u

2

∫
d̄dq

∫
d̄dp

∫
ds1

∫
ds2〈ei~p·(~r(L)−~r(0)−~R)ei~q·(~r(s1)−~r(s2))〉0 +O(u2)

)
(16)

(7)
= P0(R;L)− u

2

∫
d̄dq

∫
ds1

∫
ds2e

− 1
2K

∫
ds
∫
ds′~ks·~ks′G(s−s′)ei~q·

~R (17)

where we defined

~ks ≡ ~p (δ(s− s1)− δ(s− s2)) + ~q (δ(s− L)− δ(s)) .

Here G(s) = − 1
∂2s s,0

= −1
2
|s| is the massless propagator in one dimension

−∂2
sG(s) = δ(s).

The exponent is

−
∫
ds

∫
ds′~ks · ~ks′G(s− s′) = q2L+ p2|s1 − s2|+ ~p · ~qℵ

with ℵ ≡ |s1−L|− |s2−L|+ |s2|− |s1| = 2(s2−s1). Doing the Gaussian integrals

over ~p gives

P (~R;L) = P0(~R;L)−
∫

d̄dqe−i~q·
~Ru

2

∫
ds1

∫
ds2

(
2πK

|s1 − s2|

)d/2
e
−q2

(
L
4K
− |s1−s2|

2K

)
+O(u2) .
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This expression is explicitly of the form δP (~R;L) =
∫

d̄dqe−i~q·
~RδP̃ (~qlL) (I should

have just started from (9)) and we can read off

P̃ (~q;L) = P̃0(~q;L) + δP̃ (~q;L) (18)

= e−
Lq2

2K − u

2

∫
ds1

∫
ds2

(
2πK

|s1 − s2|

)d/2
e
−q2

(
L
4K
− |s1−s2|

2K

)
+O(u2) . (19)

Therefore

δR2
1

R2
0

= −∇2
q|q=0δP̃ (~q;L)

?
= +

u

2

∫
ds1

∫
ds2

((
2πK

|s1 − s2|

)d/2−1

2π −
(

2πK

|s1 − s2|

)d/2
L

)
.

(20)

What gives with the second (more singular!) term? To be more precise, (9) says

(in the interacting case)

P̃ (~q;L) = 〈ei~q·(~r(L)−~r(0))〉 =
〈ei~q·(~r(L)−~r(0))eU〉0

〈eU〉0
whose expansion in powers of u is

P̃ (~q;L) =
〈ei~q·(~r(L)−~r(0))〉0 − 〈ei~q·(~r(L)−~r(0))U + · · ·〉0

1− 〈U〉0 + · · ·
(21)

= 〈ei~q·(~r(L)−~r(0))〉0 − 〈ei~q·(~r(L)−~r(0))U〉0 + 〈ei~q·(~r(L)−~r(0))〉0〈U〉0︸ ︷︷ ︸
disconnected

+O(u2). (22)

The term labelled ‘disconnected’ precisely cancels the second term in (20). There-

fore

δR2
1 = +

Kd

L

u

2

∫
ds1

∫
ds2

(
2πK

|s1 − s2|

)d/2−1

2π

which has the advertised form.

(d) Show that the integrals in the previous part diverge as a/L → 0 below a certain

dimension dc. More precisely, by changing variables to s = s1 − s2 and s̄ =

(s1 + s2)/2 (and ignoring stuff at the upper limit of integration, as appropriate

for L� a) show that

δR2
1(L) ' u

(
K

2π

)d/2 ∫ L

a

dss
ε
2
−1

with ε = dc − d.

The region of the integration where s = s1 − s2 � L looks like∫ L

0

ds̄

∫
a

dss1−d/2

which diverges for d ≤ 4 (and is finite for d > 4). Hence d = dc = 4 is the upper

critical dimension.
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(e) How does ~r scale with s 7→ bs if we demand that the free hamiltonian (u = 0) is

a fixed point? What is ν at the free fixed point?

Defining ~r 7→ bν~r, we require

K

2

∫
ds (∂s~r)

2 =
K

2
b2ν−1

∫
ds (∂s~r)

2

which says ν = 1
2

(as for the Gaussian fixed point of the O(n) model).

(f) Find dc by power counting.

Let’s absorb K into ~r (or treat it as dimensionless), and therefore [r] = 1
2
, and

0 = [u]+2−d[r] which says [u] = d
2
−2, and hence u is dimensionless at d = dc = 4.

(g) We wish to integrate out the short distance fluctuations with wavelengths between

a and ba, to find an effective Hamiltonian governing the remaining degrees of

freedom:

H̃[~r] =
K̃

2

∫ L

0

ds

(
d~r

ds

)2

+
ũ

2

∫
|s1−s2|>ba

ds1ds2δ
d[~r(s1)− ~r(s2)]

Using the first-order-in-u result for δR above, show that for small ε and small

log b, the coarse-grained ‘stiffness’ parameter is of the form

K̃ = K(1− v̄ log b)

and find v̄.

Let’s take a high-energy point of view: R is a physical observable, we let the

couplings run with scale to preserve the physics. So we must have (the Callan-

Symanzik equation)

R2(L) = R2
0(1 + δR2

1) = R̃2
0(1 + δR̃2

1)

where the RHS is what we would get if we computed with parameters ũ, K̃ and

cutoff ba. Here

δR̃2
1 = ũ

(
K̃

2π

)d/2 ∫ L

ba

sε/2−1.

Using R̃2
0 = Ld

K̃
= Ld

(K+δK)
= R2

0

(
1− δK

K
+ · · ·

)
, and anticipating that ũ = u +

O(u2) we have

R2
0

(
1 + u

(
K

2π

)d/2 ∫ L

a

dssε/2−1

)
!

= R2
0

(
1− δK

K
+ u

(
K

2π

)d/2 ∫ L

ba

dssε/2−1

)
(23)

= R2
0

(
1− δK

K
− u

(
K

2π

)d/2 ∫ ba

a

dssε/2−1 +

(
K

2π

)d/2 ∫ L

a

dssε/2−1

)
(24)
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from which we conclude

K̃ = K−Ku
(
K

2π

)d/2 ∫ ba

a

dssε/2−1+O(u2) = K

(
1− u

(
K

2π

)d/2
(log b+O(ε))

)
+O(u2).

That is, v̄ = u
(
K
2π

)d/2
.

(h) A similar calculation yields the running of the interaction strength of the form

ũ = u(1− 2v̄ log b). Do the rescaling step of the RG procedure, redefining s by a

factor of b = 1 + ` + O(`2) and rescaling the ~r → Z(b)~r to put the Hamiltonian

back in the original form with the original cutoff and renormalized parameters

K ′, u′.

Including the rescaling step (and defining the transformation of ~r to be ~r′ = bν~r),

the coupling u runs like:

u′ = b2−νdũ = (1+(2−νd) log b+ · · · )u(1−2v̄ log b) = u (1 + (2− νd− 2v̄) log b) .

Similarly,

K ′ = b2ν−1K̃ = (1− (2ν − 1) log b)K(1− v̄ log b) = K(1− (2ν − 1− v̄) log b).

(i) Find the beta functions for K(`) and u(`). Find ν to first order in ε at the

nontrivial fixed point.

The beta functions are then

∂`u = (2ν − 1− v̄)u, ∂`K = −uv̄.

The scaling of K can be absorbed into a redefinition of the field ~r (just like the

coefficient of (~∇φ)2 in the O(n) model). Therefore we demand K is independent

of ` and hence

ν =
1 + v̄

2
. (25)

Using this in the β function equation for u gives

∂`u = 2− d

2
−
(
d

2
+ 2

)
v̄ =

ε

2
u−

(
K

2π

)2

u2 + ...

There is a fixed point at u? =
(
K
2π

)−d/2 ε
2
. At the fixed point, K scales as

K̃ = K

(
1− u?

(
K

2π

)2

log b

)
= K

(
1− ε

8
log b

)
' b−ε/8K.
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If we set K = 1 (i.e. absorb K into ~r), the exponent ν, defined as R ∼ Lν is

determined by the scaling of ~r needed to preserve the physics:

~r′ = bν~r

which we’ve found in (25) to be ν = 1+v̄
2

; at the fixed point, v̄ = u?
(
K
2π

)d/2
= ε/8.

(Alternatively,

~r′ = bν~r = b−1/2

√
K̃

K
~r ' b−

1
2

√
b−ε/8K

K
~r = b−( 1

2
+ ε

16). )

Therefore

ν =
1

2
+

ε

16
,

which agrees with the O(n) model exponent for n→ 0.

7. Self-avoiding membranes?

[Optional, slightly open-ended.] Consider redoing the Edwards-Flory analysis for a

theory of membranes. The fields are now ~r(σ1, σ2, · · · , σD), vectors parametrizing the

embedding of a D-dimensional object into Rd. We might consider perturbing the

Gaussian action

S0[r] =

∫
dDσ

D∑
α=1

(∂σα~r)
2

by a self-avoidance term

Su[r] =

∫
dDσ

∫
dDσ′δd(~r(σ − σ′)).

For various d and D, what does the Flory argument predict for the scaling exponent

of the brane size with the linear size L of the base space? For which values is the

excluded-volume term relevant?

Dimensional analysis gives du = 4D
D−2

for the upper critical dimension.

Are there other terms we should consider in the action?

Try to resist googling before you think about this question.
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