
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 217 Fall 2018
Assignment 9 (‘Final Exam’)

Due 12:30pm, Wednesday, December 12, 2018

1. Brain-warmer. Explain why the Wilson-Fisher fixed point in 2 < d < 4 has only two

relevant operators, which may be associated with φ and φ2. What happened to φ3?

(For example, this was important in our discussion of scaling, where we were able to

relate the whole zoo of greek letters (critical exponents) to only two numbers yt, yh, the

scaling exponents for the two relevant operators, one of which breaks the symmetry.)

2. Rotation invariance as an emergent symmetry.

Give an RG analysis which explains why the critical behavior of lattice magnets (which

do not have continuous spatial rotation symmetry) can be described by rotation-

invariant field theories.

To be more precise about what I am asking: consider a hypercubic lattice, and a

magnet with an O(n) symmetry, so that there is an n-component order parameter.

As in the problem on HW 8, analyze what perturbations of the rotation-symmetric

action preserve lattice rotations but not continuous rotations, and decide what are

their scaling dimensions at the Wilson-Fisher fixed point.

[I am re-posting this important problem from last homework, since there was universal

confusion about the fact that I was asking about spatial rotation symmetry, as opposed

to rotations in spin space.

Please note that a priori the spin rotation symmetry

S(r)a → RabSb(r), R ∈ O(n)

is completely independent of the spatial rotation symmetry

Sa
(
ri
)
→ Sa

(
Λijrj

)
, Λ ∈ O(d).

Spin-orbit couplings break the product of these two groups down to a diagonal sub-

group; such couplings are present in Lorentz-invariant field theories, and in lattice

models involving large-Z atoms, but are often negligible.] No need to repeat if you

answered this question last time.]
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3. OPE. Consider the Gaussian fixed point with O(n) symmetry. Compute the OPE

coefficients for the operators O2 ≡: φaφa :, O4 ≡: (φaφa)
2 :, and the identity operator

(here a = 1..n and the repeated index is summed). Use this information to compute

the beta function, find the Wilson-Fisher fixed point and the correlation length critical

exponent ν there.

4. A proof of the Mermin-Wagner-Hohenberg-Coleman theorem.

(a) Bogoliubov-Schwartz inequality. Convince yourself that

〈AA?〉〈BB?〉 ≥ |〈AB?〉|2 (1)

where A,B are anything, and 〈...〉 means some statistical average.

Now consider a microscopic realization of an XY model in d = 2 on a lattice with N to-

tal sites. At each site we place a 2-component unit-normalized spin ~Si = (cosφi, sinφi).

The Hamiltonian is

−H =
∑
〈ij〉

J cos (φi − φj) + h
∑
i

cosφi .

The magnetization is m = 〈cosφi〉. The claim is that for d ≤ 2, limh→0m must vanish

in the thermodynamic limit – no spontaneous breaking of the continuous symmetry

φi → φi + α.

To apply (1), we will (with cold-blooded foresight) choose

A ≡ 1

N

∑
j

e−iq·rj sinφj, B ≡ 1

N

∑
k

e−iq·rk∂φkH.

(b) Show that ∑
q

〈AA?〉 =
1

N

∑
j

〈sin2 φj〉 ≤ 1.

(c) Show that

〈AB?〉 =
Tm

N
.

Here’s a hint:

0 =
1

Z

∫ 2π

0

∏
i

dφi∂φk
(
e−H/T sinφj

)
.

(More generally 0 =
∫ 2π

0

∏
i dφi∂φk (f(φ)) as long as f(φ) is a periodic function,

f(φ) = f(φ+ 2π). This kind of relation is sometimes called a Ward identity.)

(d) Show that

〈BB?〉 =
T

N2

∑
ij

e−iq(ri−rj)〈∂φi∂φjH〉.

Hint: use the same trick as in the previous part.
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(e) Show that (I have in mind a hypercubic lattice with coordination number z = 2d)

〈BB?〉 ≤ T

N

(
h+ J

(
z − 2

d∑
µ=1

cos (qµa)

))
≤ T

N

(
h+ J~q2

)
(f) Conclude that

1 ≥
∑
q

〈AA?〉 ≥ Tm2

N2

∑
q

1

h+ Jq2
.

Take the thermodynamic limit, and argue that the resulting inequality requires

lim
h→0

m = 0 for d ≤ 2.

(g) [optional bonus question] Generalize the argument to the O(n) model.

5. Long-range interactions and the lower critical dimension. Consider perturbing

an O(n) model by long-range interaction of the form

∆H = g

∫
d̄dq Φa(q)|q|rΦa(−q).

(a) [optional] What does ∆H look like in position space? What does∫
ddxddy

n∑
a

(Φa(x)− Φa(y))2

|x− y|d+r

look like in momentum space?

(b) Find the lower critical dimension as a function of r.

6. Perturbative RG for worldsheet (Edwards-Flory) description of SAWs.

In this problem we make quantitative the analogy

unrestricted RW:SAW::gaussian fixed point:WF fixed point.

Parametrize a continuous-time random walk in d dimensions by a trajectory ~r(t). Con-

sider the Edwards hamiltonian

H[~r] =
K

2

∫ L

0

ds

(
d~r

ds

)2

+
u

2

∫
|s1−s2|>a

ds1ds2 δ
d[~r(s1)− ~r(s2)]

with a self-avoidance coupling u > 0, a short-distance cutoff a, and an IR cutoff L. We

would like to understand the large-L scaling of the polymer size, R,

R2(L) ≡ 〈|~r(L)− ~r(0)|2〉 ∼ L2ν .
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(a) Consider the probability density for two points a distance |s1−s2| along the chain

to be separated in space by a displacement ~x,

P (~x; s1 − s2) = 〈δd[~r(s1)− ~r(s2)− ~x]〉.

Show that the polymer size R can be obtained from its fourier transform P̃ (~q; s)

by the relation

R2(L) = −∇2
qP̃ (~q;L)|q=0.

(So far this does not involve a choice of hamiltonian.)

(b) For the free case u = 0, compute the equilibrium polymer size R0(L) in terms of

d, L,K. It may be helpful to derive a relation of the form

〈ei
∫ L
0 ds~k(s)·~r(s)〉0 = e

1
2K

∫ L
0 dsds′~k(s)·~k(s′)G(s−s′).

(c) Develop an expansion of P̃ (~q;L) to first order in u, using the cumulant expansion

as in §6.6 of the lecture notes. You should find an expression of the form R2(L) =

R2
0(L) (1 + δR2

1(L) +O(u2)) with

δR2
1(L) =

u

L

(
K

2π

)d/2 ∫ L

0

ds1

∫ L

s1+a

ds2
A2(s1, s2;L)

|s1 − s2|
d−2
2

.

(d) Show that the integrals in the previous part diverge as a/L→ 0 below a certain

dimension dc. More precisely, by changing variables to s = s1 − s2 and s̄ =

(s1 + s2)/2 (and ignoring stuff at the upper limit of integration, as appropriate

for L� a) show that

δR2
1(L) ' u

(
K

2π

)d/2 ∫ L

a

dss
ε
2
−1

with ε = dc − d.

(e) How does ~r scale with s 7→ bs if we demand that the free hamiltonian (u = 0) is

a fixed point? What is ν at the free fixed point?

(f) Find dc by power counting.

(g) We wish to integrate out the short distance fluctuations with wavelengths between

a and ba, to find an effective Hamiltonian governing the remaining degrees of

freedom:

H̃[~r] =
K̃

2

∫ L

0

ds

(
d~r

ds

)2

+
ũ

2

∫
|s1−s2|>ba

ds1ds2δ
d[~r(s1)− ~r(s2)]

Using the first-order-in-u result for δR above, show that for small ε and small

log b, the coarse-grained ‘stiffness’ parameter is of the form

K̃ = K(1− v̄ log b)

and find v̄.
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(h) A similar calculation yields the running of the interaction strength of the form

ũ = u(1− 2v̄ log b). Do the rescaling step of the RG procedure, redefining s by a

factor of b = 1 + ` + O(`2) and rescaling the ~r → Z(b)~r to put the Hamiltonian

back in the original form with the original cutoff and renormalized parameters

K ′, u′.

(i) Find the beta functions for K(`) and u(`). Find ν to first order in ε at the

nontrivial fixed point.

7. Self-avoiding membranes?

[Optional, slightly open-ended.] Consider redoing the Edwards-Flory analysis for a

theory of membranes. The fields are now ~r(σ1, σ2, · · · , σD), vectors parametrizing the

embedding of a D-dimensional object into Rd. We might consider perturbing the

Gaussian action

S0[r] =

∫
dDσ

D∑
α=1

(∂σα~r)
2

by a self-avoidance term

Su[r] =

∫
dDσ

∫
dDσ′δd(~r(σ − σ′)).

For various d and D, what does the Flory argument predict for the scaling exponent

of the brane size with the linear size L of the base space? For which values is the

excluded-volume term relevant?

Are there other terms we should consider in the action?

Try to resist googling before you think about this question.

5


