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1. Too many numbers.

Find the number of qbits the dimension of whose Hilbert space is the number

of atoms in the Earth. (It’s not very many.) Now imagining diagonalizing a

Hamiltonian acting on this space.

2. Warmup for the next problem.

Parametrize the general pure state of a qbit in terms of two real angles. A good

way to do this is to find the eigenstates of

σn ≡ ň · ~σ ≡ nxX + nyY + nzZ

where ň is a unit vector.

Compute the expectation values of X and Z in this state, as a function of the

angles θ, ϕ.

3. Mean field theory is product states.

Consider a spin system on a lattice. More specifically, consider the transverse

field Ising model:

H = −J

∑
〈x,y〉

ZxZy + g
∑
x

Xx

 .

Consider the mean field state:

|ψMF〉 = ⊗x |ψ〉x = ⊗x

(∑
sx±

ψsx |sx〉x

)
, (1)

i.e., restrict to the case where the state ψ of each spin is the same.

Write the variational energy for the mean field state, i.e. compute the expectation

value of H in the state |ψMF〉, E(θ, ϕ) ≡ 〈ψMF|H |ψMF〉.

Assuming sx is independent of x, minimize E(θ, ϕ) for each value of the di-

mensionless parameter g. Find the groundstate magnetization 〈ψ|Zx |ψ〉 in this

approximation, as a function of g.
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4. Classical versus quantum evolution. [This is an optional open-ended prob-

lem intended as food for thought.]

We showed in lecture that the set of states reachable from a given state by

polynomial-depth quantum circuits is a small fraction of the whole Hilbert space.

This followed by close analogy with the statement that most boolean functions

aren’t computable using a polynomial number of gates. The closeness of this

analogy leads to the following question:

Let PC(s, t) be the probability of obtaining bit string s when starting with N

uniform iid bits and feeding them through a classical circuit C made of t layers

of 2-bit gates.

Let

PU(s, t) =
∣∣〈sz = s|U ⊗N

i=1 |sx = 1〉
∣∣2

where U is a quantum circuit made from t layers of neighboring 2-qbit gates.

This is the probability distribution for measurements of σz
i on the state resulting

from acting a quantum circuit U on a product of σx eigenstates.

Show that when t = 0 the distributions are the same.

Under some assumptions about the scaling of t with N , can we find a PU(s, t)

that can never be a PC(s, t)?

If we were allowed to measure in the X-basis as well as the Z-basis then it would

be easy, because we could for example just design the circuit to produce at time

t Bell pairs between spins 2n − 1 and 2n, and do exactly the Bell protocol on

them.

Warning: I don’t know the answer (yet).
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