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1. Brain-warmer. Consider a system of N qbits. Show (convince yourself) that

the operator
N∑
i=1

Xi

written in the eigenbasis of Zi is the adjacency matrix of an N -dimensional hy-

percube.

2. Classical circuits brain-warmer.

(a) Show that this circuit adds the input bits (at left) mod two:

XOR =

XOR

XOR

XOR

(b) [Optional] Construct a circuit with n input bits and one output bit which

gives zero unless exactly one of the bits is one. The ingredients available are

any gates that take two bits to at most two bits.

3. Entanglement entropy in a quantum not-so-many-body system made

from spins.

Consider the transverse-field Ising model on a lattice with only two (L = 2) sites,

i = 1, 2, so that the Hilbert space is H = H1 ⊗ H2 where each of H1,2 is a

two-state system, and the Hamiltonian is

H = −J (2Z1Z2 + gX1 + gX2) .

(a) Find the matrix elements of the Hamiltonian in the eigenbasis of Z1, Z2

hab = 〈sa|H |sb〉

where a, b = 1..N . What is N in terms of the system size L? Check that

your matrix is hermitian.
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(b) Find the eigenvalues of h and plot them as a function of g. (You may wish

to use a computer for this and other parts of this problem.)

(c) Find the eigenvector (the groundstate) and eigenvalue of the matrix h with

the lowest eigenvalue. Write the groundstate as

|Ψ〉 =
N∑
a=1

αa |φa〉 .

(d) The Hilbert space is of the form H1⊗H2 where H1,2 are the Hilbert spaces

of a single spin. Construct the reduced density matrix for the first site in

the groundstate

ρ1 ≡ trH2|Ψ〉〈Ψ|.

(e) Find the eigenvalues λα of ρ1. Calculate the von Neumann entropy of ρ1,

S(ρ1) = −
∑

α λα log λα as a function of g. What is the numerical value

when g →∞? What about g → 0? Do they agree with your expectations?

(f) [Bonus] Redo this problem with L = 3 sites (or more):

H = −J (Z1Z2 + Z2Z3 + Z3Z1 + gX1 + gX2 + gX2) .

4. Entanglement entropy in a quantum not-so-many-body system made

from electrons. [This problem is optional for students in physics 139.]1

Consider a system consisting of two electrons, each with spin one-half, and each of

which can occupy either of two sites labelled i = 1, 2. The dynamics is governed

by the following (Hubbard) Hamiltonian:

H = −t
∑
σ=↑,↓

(
c†1σc2σ + c†2σc1σ

)
+ U

∑
i

ni↑ni↓.

σ =↑, ↓ labels the electron spin. c and c† are fermion creation and annihilation

operators,

{ciσ, c
†
i′σ′} = δii′δσσ′

and niσ ≡ c†iσciσ is the number operator. The condition that there is a total of

two electrons means we only consider states |ψ〉 with(∑
i,σ

niσ − 2

)
|ψ〉 = 0.

The first term is a kinetic energy which allows the electrons to hop between the

two sites. The second term is a potential energy which penalizes the states where

two electrons sit at the same site, by an energy U > 0.

1I got this problem from Tarun Grover.
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(a) Enumerate a basis of two-electron states (make sure they satisfy the Pauli

exclusion principle).

(b) The Hamiltonian above has some symmetries. In particular, the total elec-

tron spin in the ẑ direction is conserved. For simplicity, let’s focus on the

states where it is zero, such as c†1↑c
†
2↓ |0〉 where |0〉 is the state with no

electrons, ciσ |0〉 = 0. Find a basis for this subspace, {φa}, a = 1..N .

(c) Find the matrix elements of the Hamiltonian in this basis,

hab ≡ 〈φa|H|φb〉 , a, b = 1..N.

(d) Find the eigenstate and eigenvalue of the matrix h with the lowest eigen-

value. Write the groundstate as

|Ψ〉 =
N∑
a=1

αa |φa〉 .

(e) Before imposing the global constraints on particle number and Sz, the

Hilbert space can be factored (up to some signs because fermions are weird)

by site: H = H1 ⊗H2, where Hi = span{|0〉 , c†i↑ |0〉 , c
†
i↓ |0〉 , c

†
i↑c
†
i↓ |0〉}. Us-

ing this bipartition, construct the reduced density matrix for the first site

in the groundstate:

ρ1 ≡ trH2 |Ψ〉 〈Ψ| .

(f) Find the eigenvalues λα of ρ1. Calculate the von Neumann entropy of ρ1,

S(ρ1) = −
∑

α λα log λα as a function of U/t. What is the numerical value

when U/t→∞?

(g) Super-Exchange. Go back to the beginning and consider the limit U � t.

What are the groundstates when U/t → ∞, so that we may completely

ignore the hopping term?

At second order in degenerate perturbation theory, find the effective Hamil-

tonian which splits the degeneracy for small but nonzero t/U . Write the

answer in terms of the spin operator

~Si ≡ c†iσ~σσσ′ciσ′ .

The sign is important!

(h) Redo all the previous parts for the case where the two particles are spin-half

bosons,

ciσ  biσ, [biσ,b
†
i′σ′ ] = δii′δσσ′ .
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5. Chain rules.

Show that for a joint distribution of n random variables p(X1 · · ·Xn), the joint

and conditional entropies satisfy the following chain rule:

H(X1 · · ·Xn) =
n∑
i=1

H(Xi|Xi−1 · · ·X1).

Show that the n = 2 case is the expectation of the log of the BHS of Bayes rule.

Then repeatedly apply the n = 2 case to increasing values of n.

6. Learning decreases ignorance only on average.

Consider the joint distribution pyx =

(
0 a

b b

)
yx

, where y =↑, ↓ is the row index and

x =↑, ↓ is the column index (so yx are like the indices on a matrix). Normalization

implies
∑

xy pxy = a+2b = 1, so we have a one-parameter family of distributions,

labelled by b.

What is the allowed range of b?

Find the marginals for x and y. Find the conditional probabilities p(x|y) and

p(y|x).

Check that H(X|Y ) ≤ H(X) and H(Y |X) ≤ H(Y ) for any choice of b.

Show, however, that H(X|Y =↓) > H(X) for any b < 1
2
.
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