University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 239/139 Fall 2019 Assignment 7

Due 12:30pm Wednesday, November 20, 2019

1. Two faces of strong subadditivity. Show that for any state ρ_{ABC} on $\mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$,

$$S(A) + S(B) \le S(AC) + S(BC)$$

and that this statement is equivalent to strong subadditivity in the form

$$S(A'C') + S(A'B') \ge S(A') + S(A'B'C') \qquad \forall A'B'C'.$$

Hint: use the Araki-Lieb purification trick.

2. Consequences of SSA for mutual information. Prove that SSA implies

$$I(A:B) + I(A:C) \le 2S(A) .$$

Is the analogous inequality for Shannon entropies true?

Find an example of a state where I(A:B) > S(A).

3. Measurement is coarse-graining.

Let ρ, σ be two states on \mathcal{H} , and let $\{\mathcal{M}_x\}$ be a POVM. Define the classical probability distributions p_x, q_x from the outcomes of a measurement of $\{\mathcal{M}_x\}$ on the states ρ, σ respectively (that is, $p_x = \operatorname{tr} \rho \mathcal{M}_x$ etc). Show that

$$\hat{D}(\boldsymbol{\rho}||\boldsymbol{\sigma}) \ge D(p||q).$$

4. Scramble.

For this problem \mathcal{H}_A has dimension d.

(a) Warmup. The set of linear operators $\operatorname{End}(\mathcal{H}_A)$ is itself a Hilbert space with the Hilbert-Schmidt inner product $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr} \mathbf{A}^{\dagger} \mathbf{B}$. Find an orthogonal basis $\{ \mathbf{U}_a \}$ for this space (over \mathbb{C}) whose elements are themselves unitary operators, $\operatorname{tr} \mathbf{U}_a^{\dagger} \mathbf{U}_b = d\delta_{ab}$.

[Hint: consider the algebra generated by the unitaries \mathbf{X}, \mathbf{Z} on the qdit teleportation problem on the previous problem set.]

Bonus: For the case of $|A| = 2^k$ find such a basis whose elements square to one.

(b) Consider a maximally entangled state $|\Phi\rangle \equiv \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle \in \mathcal{H}_A \otimes \mathcal{H}_A$. Show that the d^2 maximally entangled states

$$|\Phi_a\rangle \equiv \mathbf{U}_a \otimes \mathbb{1} |\Phi\rangle$$

form an orthonormal basis of $\mathcal{H}_A \otimes \mathcal{H}_A$.

- (c) Check your answers to the previous two parts for the case of qbits d = 2. Make a basis of product states from linear combinations of maximally entangled states.
- (d) For an arbitrary operator $\mathbf{A} \in \operatorname{End}(A)$ find $\{p_a, \mathbf{U}_a\}$ with p_a probabilities and \mathbf{U}_a unitary such that the associated channel scrambles \mathbf{A} in the sense that

$$\sum_{a} p_a \mathbf{U}_a \mathbf{A} \mathbf{U}_a^{\dagger} = \frac{\mathrm{tr} \mathbf{A}}{d} \mathbb{1}.$$

- (e) Use the previous result and the concavity of the entropy to show that the uniform state $\mathbf{u} = 1/d$ has the maximum von Neumann entropy on A.
- (f) Bonus problem: for the case where \mathbf{A} is Hermitian, find a set of only d unitaries which scramble \mathbf{A} .
- 5. Random quantum expanders. [somewhat open-ended and numerical]

Consider the family of quantum channels of the form

$$oldsymbol{
ho} \mapsto \mathcal{E}_{\chi}(oldsymbol{
ho}) = \sum_{i=1}^{\chi} p_i \mathbf{U}_i oldsymbol{
ho} \mathbf{U}_i^{\dagger}$$

with $\{U_i\}$ a collection of unitaries. Such a channel is called a *quantum expander*. Show that such a channel is unital.

Sample χ random unitaries from the Haar measure on U(d) e.g. in Mathematica¹. (You can take $p_i = 1/\chi$ for definiteness if you wish.)

Sample a random initial density matrix².

Consider the rate at which repeated action of the channel \mathcal{E}_{χ} , $\rho_n = \mathcal{E}^n(\rho)$ mixes the initial state ρ as a function of χ (and d). We can use the von Neumann entropy as a measure of this mixing. Make some plots and some estimates.

¹ Haar measure means the measure which is invariant under the group action. I did this by choosing a $d \times d$ complex matrix X with entries chosen from the gaussian distribution (which is indeed invariant under U(d)) and then taking $Y = X + X^{\dagger}$ to make it hermitian, and then using the matrix U which diagonalizes Y.

I did this by choosing a complex matrix X with entries chosen from the gaussian distribution, and then taking $Y = X + X^{\dagger}$ to make it hermitian and then taking $Z = Y^2$ to make it positive and then taking $\rho = Z/\text{tr}Z$ to make it a density matrix. What distribution did I use?

If n is very large, how many terms do I actually need to include in the sum in

$$\mathcal{E}^{n}(\boldsymbol{\rho}) = \sum_{i_{1}..i_{n}} p_{i_{n}} \cdots p_{i_{1}} \mathbf{U}_{i_{1}} \cdots \mathbf{U}_{i_{n}} \boldsymbol{\rho} \mathbf{U}_{i_{n}}^{\dagger} \cdots \mathbf{U}_{i_{1}}^{\dagger} ?$$

Consider the eigenstates (eigenoperators) of the (super)operator \mathcal{E}_{χ} . Can you show that any state orthogonal (in the Hilbert-Schmidt norm) to 11 has a an eigenvalue less than 1?